Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 190-198

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the transformations of the symmetry groups of regular polyhedrons is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry type up to the 35th order of accuracy.
Keywords: numerical integration, symmetry groups, rotation groups, regular polyhedrons.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2017_14_a103,
     author = {A. S. Popov},
     title = {Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {190--198},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 190
EP  - 198
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/
LA  - ru
ID  - SEMR_2017_14_a103
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 190-198
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/
%G ru
%F SEMR_2017_14_a103
A. S. Popov. Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 190-198. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/