Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 190-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the transformations of the symmetry groups of regular polyhedrons is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry type up to the 35th order of accuracy.
Keywords: numerical integration, symmetry groups, rotation groups, regular polyhedrons.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2017_14_a103,
     author = {A. S. Popov},
     title = {Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {190--198},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 190
EP  - 198
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/
LA  - ru
ID  - SEMR_2017_14_a103
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 190-198
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/
%G ru
%F SEMR_2017_14_a103
A. S. Popov. Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 190-198. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a103/

[1] S. L. Sobolev, “Cubature formulas on a sphere which are invariant under transformation of finite rotational groups”, Dokl. Akad. Nauk SSSR, 146:2 (1962), 310–313 (in Russian) | MR | Zbl

[2] S. L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sibirskii Mat. Zh., 3:5 (1962), 769–796 (in Russian) | MR | Zbl

[3] A. D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl

[4] V. I. Lebedev, “Nodes and weights of Gauss–Markov type quadrature formulas from 9th to 17th accuracy orders for a sphere which are invariant under the octahedral group with inversion”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 48–54 (in Russian) | MR | Zbl

[5] V. I. Lebedev, “On quadratures for a sphere”, Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976), 293–306 (in Russian) | MR | Zbl

[6] V. I. Lebedev, “Quadrature formulas for a sphere of the 25th to the 29th orders of accuracy”, Sibirskii Mat. Zh., 18:1 (1977), 132–142 (in Russian) | MR | Zbl

[7] V. I. Lebedev, D. N. Laikov, “Quadrature formula of 131st algebraic order of accuracy for a sphere”, Dokl. RAN, 366:6 (1999), 741–745 (in Russian) | MR | Zbl

[8] S. I. Konyaev, “Gauss type quadratures for a sphere invariant under icosahedral group with inversion”, Mat. Zametki, 25:4 (1979), 629–634 (in Russian) | MR | Zbl

[9] S. I. Konyaev, “Formulas for numerical integration on a sphere”, Embedding Theorems and Their Applications, Trudy Seminara Akad. S. L. Soboleva, 1, Novosibirsk, 1982, 75–82 (in Russian) | MR | Zbl

[10] S. I. Konyaev, “On invariant quadrature formulae for a sphere”, Russ. J. Numer. Anal. Math. Modelling, 10:1 (1995), 41–47 | DOI | MR | Zbl

[11] I. P. Mysovskikh, Interpolation Cubature Formulas, Nauka, M., 1981 (in Russian) | MR

[12] A. S. Popov, “Cubature formulae for a sphere which are invariant with respect to the tetrahedral group”, Computational Mathematics and Mathematical Physics, 35:3 (1995), 369–374 | MR | Zbl

[13] A. S. Popov, “Cubature formulae of high orders of accuracy for a sphere which are invariant with respect to the tetrahedral group”, Computational Mathematics and Mathematical Physics, 36:4 (1996), 417–421 | MR | Zbl

[14] A. S. Popov, “Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups”, Computational Mathematics and Mathematical Physics, 38:1 (1998), 30–37 | MR | Zbl

[15] A. S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Siberian J. of Numer. Mathematics, 5:4 (2002), 367–372 (in Russian) | MR

[16] A. S. Popov, “The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere”, Siberian J. of Numer. Mathematics, 8:2 (2005), 143–148 (in Russian) | Zbl

[17] A. S. Popov, “Cubature formulas on a sphere invariant under the icosahedral rotation group”, Numerical Analysis and Applications, 1:4 (2008), 355–361 | DOI

[18] A. S. Popov, “Cubature formulas on a sphere invariant under the tetrahedral group with inversion”, Siberian Electronic Mathematical Reports, 11 (2014), 372–379 (in Russian) | MR | Zbl

[19] L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, M., 1989 (in Russian) | MR | Zbl

[20] V. A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 (in Russian) | MR | Zbl

[21] V. A. Ditkin, L. A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Matematika i Vychisl. Tekhnika, 1, Mashgiz, M., 1953, 3–13 (in Russian) | MR