On optimal control in a model of rigidviscoplastic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1463-1471

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the optimal control problem in a 3D flow model for incompressible rigid-viscoplastic media of the Bingham kind with homogeneous Dirichlet boundary conditions and a given cost functional. On the basis of methods of the theory of variational inequalities with pseudomonotone operators, a theorem on the solvability of the optimization problem in the class of weak steady solutions is proved.
Keywords: viscoplastic Bingham-type fluid, 3D flows, optimal control problem, variational inequalities.
@article{SEMR_2017_14_a102,
     author = {M. A. Artemov and A. V. Skobaneva},
     title = {On optimal control in a model of rigidviscoplastic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1463--1471},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/}
}
TY  - JOUR
AU  - M. A. Artemov
AU  - A. V. Skobaneva
TI  - On optimal control in a model of rigidviscoplastic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1463
EP  - 1471
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/
LA  - ru
ID  - SEMR_2017_14_a102
ER  - 
%0 Journal Article
%A M. A. Artemov
%A A. V. Skobaneva
%T On optimal control in a model of rigidviscoplastic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1463-1471
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/
%G ru
%F SEMR_2017_14_a102
M. A. Artemov; A. V. Skobaneva. On optimal control in a model of rigidviscoplastic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1463-1471. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/