On optimal control in a model of rigidviscoplastic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1463-1471.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the optimal control problem in a 3D flow model for incompressible rigid-viscoplastic media of the Bingham kind with homogeneous Dirichlet boundary conditions and a given cost functional. On the basis of methods of the theory of variational inequalities with pseudomonotone operators, a theorem on the solvability of the optimization problem in the class of weak steady solutions is proved.
Keywords: viscoplastic Bingham-type fluid, 3D flows, optimal control problem, variational inequalities.
@article{SEMR_2017_14_a102,
     author = {M. A. Artemov and A. V. Skobaneva},
     title = {On optimal control in a model of rigidviscoplastic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1463--1471},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/}
}
TY  - JOUR
AU  - M. A. Artemov
AU  - A. V. Skobaneva
TI  - On optimal control in a model of rigidviscoplastic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1463
EP  - 1471
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/
LA  - ru
ID  - SEMR_2017_14_a102
ER  - 
%0 Journal Article
%A M. A. Artemov
%A A. V. Skobaneva
%T On optimal control in a model of rigidviscoplastic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1463-1471
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/
%G ru
%F SEMR_2017_14_a102
M. A. Artemov; A. V. Skobaneva. On optimal control in a model of rigidviscoplastic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1463-1471. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/

[1] W. Prager, Introduction to Mechanics of Continua, Ginn and Co., New York, 1961 | MR | Zbl

[2] G. Duvaut, J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976 | MR | Zbl

[3] J. Malek, M. Ruzicka, V. V. Shelukhin, “Hershel–Bulkley fluids: existence and regularity of steady flows”, Mathematical Models and Methods in Applied Sciences, 15:12 (2005), 1845–1861 | DOI | MR | Zbl

[4] A. E. Mamontov, “Existence of global solutions to multidimensional equations for Bingham fluids”, Mathematical Notes, 82:3–4 (2007), 501–517 | DOI | MR | Zbl

[5] A. V. Lapin, A. D. Romanenko, “Solving the problem of Bingham fluid flow in cylindrical pipeline”, Russian Mathematics (Izvestiya VUZ. Matematika), 59:2 (2015), 67–70 | DOI | MR | Zbl

[6] N. E. Khouja, N. Roquet, B. Cazacliu, “Analysis of a regularized Bingham model with pressure-dependent yield stress”, Journal of Mathematical Fluid Mechanics, 17:4 (2015), 723–739 | DOI | MR | Zbl

[7] V. V. Shelukhin, V. V. Neverov, “Thermodynamics of micropolar Bingham fluids”, Journal of Non-Newtonian Fluid Mechanics, 236 (2016), 83–90 | DOI | MR

[8] E. S. Baranovskii, M. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, International Journal of Differential Equations, 2016 (2016), 9428128 | DOI | MR | Zbl

[9] D. Wachsmuth, T. Roubicek, “Optimal control of planar flow of incompressible non-Newtonian fluids”, Zeitschrift fur Analysis und ihre Anwendung, 29:3 (2010), 351–376 | DOI | MR | Zbl

[10] E. S. Baranovskii, “Solvability of the stationary optimal control problem for motion equations of second grade fluids”, Siberian Electronic Mathematical Reports, 9 (2012), 554–560 | MR | Zbl

[11] E. S. Baranovskii, “Optimal control for steady flows of the Jeffreys fluids with slip boundary condition”, Journal of Applied and Industrial Mathematics, 8 (2014), 168–176 | DOI | MR | Zbl

[12] E. S. Baranovskii, “An optimal boundary control problem for the motion equations of polymer solutions”, Siberian Advances in Mathematics, 24 (2014), 159–168 | DOI | MR

[13] V. G. Litvinov, Motion of a nonlinear-viscous fluid, Nauka, M., 1982 | MR | Zbl

[14] R. Temam, Navier–Stokes equations. Theory and numerical analysis, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1979 | MR | Zbl

[15] R. A. Adams, Sobolev spaces, Acad. Press, New York, 1975 | MR | Zbl

[16] J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl

[17] E. Zeidler, Nonlinear Functional Analysis and Its Applications, v. III, Variational Methods and Optimization, Springer, New York, 1985 | MR | Zbl