Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a102, author = {M. A. Artemov and A. V. Skobaneva}, title = {On optimal control in a model of rigidviscoplastic}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1463--1471}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/} }
M. A. Artemov; A. V. Skobaneva. On optimal control in a model of rigidviscoplastic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1463-1471. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a102/
[1] W. Prager, Introduction to Mechanics of Continua, Ginn and Co., New York, 1961 | MR | Zbl
[2] G. Duvaut, J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976 | MR | Zbl
[3] J. Malek, M. Ruzicka, V. V. Shelukhin, “Hershel–Bulkley fluids: existence and regularity of steady flows”, Mathematical Models and Methods in Applied Sciences, 15:12 (2005), 1845–1861 | DOI | MR | Zbl
[4] A. E. Mamontov, “Existence of global solutions to multidimensional equations for Bingham fluids”, Mathematical Notes, 82:3–4 (2007), 501–517 | DOI | MR | Zbl
[5] A. V. Lapin, A. D. Romanenko, “Solving the problem of Bingham fluid flow in cylindrical pipeline”, Russian Mathematics (Izvestiya VUZ. Matematika), 59:2 (2015), 67–70 | DOI | MR | Zbl
[6] N. E. Khouja, N. Roquet, B. Cazacliu, “Analysis of a regularized Bingham model with pressure-dependent yield stress”, Journal of Mathematical Fluid Mechanics, 17:4 (2015), 723–739 | DOI | MR | Zbl
[7] V. V. Shelukhin, V. V. Neverov, “Thermodynamics of micropolar Bingham fluids”, Journal of Non-Newtonian Fluid Mechanics, 236 (2016), 83–90 | DOI | MR
[8] E. S. Baranovskii, M. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, International Journal of Differential Equations, 2016 (2016), 9428128 | DOI | MR | Zbl
[9] D. Wachsmuth, T. Roubicek, “Optimal control of planar flow of incompressible non-Newtonian fluids”, Zeitschrift fur Analysis und ihre Anwendung, 29:3 (2010), 351–376 | DOI | MR | Zbl
[10] E. S. Baranovskii, “Solvability of the stationary optimal control problem for motion equations of second grade fluids”, Siberian Electronic Mathematical Reports, 9 (2012), 554–560 | MR | Zbl
[11] E. S. Baranovskii, “Optimal control for steady flows of the Jeffreys fluids with slip boundary condition”, Journal of Applied and Industrial Mathematics, 8 (2014), 168–176 | DOI | MR | Zbl
[12] E. S. Baranovskii, “An optimal boundary control problem for the motion equations of polymer solutions”, Siberian Advances in Mathematics, 24 (2014), 159–168 | DOI | MR
[13] V. G. Litvinov, Motion of a nonlinear-viscous fluid, Nauka, M., 1982 | MR | Zbl
[14] R. Temam, Navier–Stokes equations. Theory and numerical analysis, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1979 | MR | Zbl
[15] R. A. Adams, Sobolev spaces, Acad. Press, New York, 1975 | MR | Zbl
[16] J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod Gauthier-Villars, Paris, 1969 | MR | Zbl
[17] E. Zeidler, Nonlinear Functional Analysis and Its Applications, v. III, Variational Methods and Optimization, Springer, New York, 1985 | MR | Zbl