On group properties of epidemics equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1413-1423.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a time-homogeneous Markov process on discret set of states known as Weiss (simple) epidemic process. For exponential (double) generating function of the transition probabilities we consider system of first and second Kolmogorov equations. The system exact solution was obtained by using Lie group methods. We also discuss the opportunity of using the same method in the case of general epidemic process.
Keywords: Markov process, exponential (double) generating function, first and second Kolmogorov equation, Fourier method, simple epidemic, general epidemic, infinitesimal symmetry generator, Lie algebra.
@article{SEMR_2017_14_a100,
     author = {A. V. Mastikhin},
     title = {On group properties of epidemics equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1413--1423},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a100/}
}
TY  - JOUR
AU  - A. V. Mastikhin
TI  - On group properties of epidemics equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1413
EP  - 1423
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a100/
LA  - ru
ID  - SEMR_2017_14_a100
ER  - 
%0 Journal Article
%A A. V. Mastikhin
%T On group properties of epidemics equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1413-1423
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a100/
%G ru
%F SEMR_2017_14_a100
A. V. Mastikhin. On group properties of epidemics equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1413-1423. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a100/

[1] A.V. Kalinkin, “Markov Branching processes with interaction”, Uspekhi Mat. Nauk, 57:2 (2002), 23–84 | DOI | MR | Zbl

[2] A.V. Kalinkin, “Final probabilities for a branching process with interaction of particles and an epidemic process”, Theory Probab. Appl., 43 (1998), 773–780 | MR | Zbl

[3] L.V. Ovsiannikov, Group analysis of differential equations, Academic press, 1982 | MR | Zbl

[4] Vinogradov A. M., Krasilschik I. S. (eds.), Symmetries and conservatings laws of partial differential equations, Factorial Press, 2005 (In Russian) | MR

[5] G. Weiss, “On the spread of epidemics by carries”, Biometrics, 21:2 (1965), 481–490 | DOI

[6] J. Gani, “Approaches to the modelling of AIDS”, Stochastic processes in epidemic theory, Lecture notes in biomathematics, 86, Springer, Heidelberg, 1990, 145–154 | DOI | Zbl

[7] M.S. Bartlett, “Some evolutionary stochastic processes”, J. of Royal Statistical Society. Series B (Methodological), 11 (1949), 211–229 | MR | Zbl

[8] A.V. Mastikhin, “Final distribution for the Markov process of the Gani epidemics”, Math. Notes, 82:6 (2004), 787–797 | MR

[9] A.V. Mastikhin, “Final probabilities for Becker epidemic Markov process”, Theory Probab. Appl., 56:3 (2012), 521–527 | DOI | MR | Zbl

[10] A.V. Kalinkin, A.V. Mastikhin, “A limit theorem for a Weiss epidemic”, J. Appl. Prob., 52:1 (2015), 247–257 | DOI | MR | Zbl

[11] N.H. Ibragimov, Tranformation groups applied to mathematical physics, Riedel, Dortrecht, 1985 | MR

[12] A.V. Mastikhin, “Riemann function for some Kolmogorov equations”, Injenerny vestnik MGTU, Electronny jurnal. Priborostroenie, 12 (2014) (In Russian)