On the сomplexity of quasivariety lattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 92-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any AD-class of algebraic structures of finite signature contains continuum many proper subclasses, which have the Nurakunov non-computability property, but which are not Q-universal (among those are almost all the known Q-universal quasivarieties nowadays). A similar result holds for some classes of algebraic structures of countable signature. This provides a negative answer to an open question.
Keywords: computable set, lattice, quasivariety, Q-universality.
@article{SEMR_2017_14_a1,
     author = {S. M. Lutsak},
     title = {On the {\cyrs}omplexity of quasivariety lattices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {92--97},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a1/}
}
TY  - JOUR
AU  - S. M. Lutsak
TI  - On the сomplexity of quasivariety lattices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 92
EP  - 97
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a1/
LA  - ru
ID  - SEMR_2017_14_a1
ER  - 
%0 Journal Article
%A S. M. Lutsak
%T On the сomplexity of quasivariety lattices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 92-97
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a1/
%G ru
%F SEMR_2017_14_a1
S. M. Lutsak. On the сomplexity of quasivariety lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 92-97. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a1/

[1] A. M. Nurakunov, “Unreasonable lattices of quasivarieties”, Internat. J. Algebra Comput., 22:3 (2012), 1–17 | DOI | MR

[2] A. M. Nurakunov, “Quasivariety lattices of pointed Abelian groups”, Algebra and Logic, 53:3 (2014), 372–400 | DOI | MR | Zbl

[3] M. V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Universalis, 21:2–3 (1985), 172–180 | DOI | MR | Zbl

[4] M. E. Adams, K. V. Adaricheva, W. Dziobiak, A. V. Kravchenko, “Open questions related to the problem of Birkhoff and Maltsev”, Stud. Log., 78:1–2 (2004), 357–378 | DOI | MR | Zbl

[5] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Plenum, New York, 1998 | MR

[6] M. V. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. II”, Internat. J. Algebra Comput., 24:8 (2014), 1099–1126 | DOI | MR | Zbl

[7] M. V. Schwidefsky, “On the somplexity of quasivariety lattices”, Algebra and Logic, 54:3 (2015), 381–398 | DOI | MR | Zbl

[8] A. I. Maltsev, Algebraic Systems, Springer-Verlag, New York, 1973 | MR | Zbl

[9] M. V. Semenova, F. Wehrung, “Sublattices of lattices of order-convex sets. II. Posets of finite height”, Internat. J. Algebra Comput., 13:5 (2003), 543–564 | DOI | MR | Zbl

[10] M. E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Amer. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl

[11] M. E. Adams, W. Dziobiak, “Finite-to-finite universal quasivarieties are $Q$-universal”, Algebra Universalis, 46:1–2 (2001), 253–283 | DOI | MR | Zbl

[12] M. V. Semenova, A. Zamojska-Dzienio, “On lattices of subclasses”, Siberian Math. J., 53:5 (2012), 1111–1132 | DOI | MR | Zbl