On the сomplexity of quasivariety lattices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 92-97
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that any AD-class of algebraic structures of finite signature contains continuum many proper subclasses, which have the Nurakunov non-computability property, but which are not Q-universal (among those are almost all the known Q-universal quasivarieties nowadays). A similar result holds for some classes of algebraic structures of countable signature. This provides a negative answer to an open question.
Keywords:
computable set, lattice, quasivariety, Q-universality.
@article{SEMR_2017_14_a1,
author = {S. M. Lutsak},
title = {On the {\cyrs}omplexity of quasivariety lattices},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {92--97},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a1/}
}
S. M. Lutsak. On the сomplexity of quasivariety lattices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 92-97. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a1/