A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1219-1228.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a semi-Lagrangian algorithm for solving the two-dimensional advection problem. A numerical solution is constructed as a piecewise constant function on neighborhood of grid node. The proposed method is stable and gives an approximate solution with the first order of accuracy for smooth solutions. We use dynamically adaptive grid. As initial guest we consider rectangular grid.
Keywords: semi-Lagrangian method, adaptive grid
Mots-clés : advection problem.
@article{SEMR_2016_13_a99,
     author = {A. V. Vyatkin and E. V. Kuchunova and V. V. Shaydurov},
     title = {A {semi-Lagrangian} method on dynamically adapted grid for two-dimensional advection problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1219--1228},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/}
}
TY  - JOUR
AU  - A. V. Vyatkin
AU  - E. V. Kuchunova
AU  - V. V. Shaydurov
TI  - A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1219
EP  - 1228
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/
LA  - ru
ID  - SEMR_2016_13_a99
ER  - 
%0 Journal Article
%A A. V. Vyatkin
%A E. V. Kuchunova
%A V. V. Shaydurov
%T A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1219-1228
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/
%G ru
%F SEMR_2016_13_a99
A. V. Vyatkin; E. V. Kuchunova; V. V. Shaydurov. A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1219-1228. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/

[1] S. K. Godunov, V. S. Ryaben'kii, Difference Schemes, Nauka, M., 1977 | MR | Zbl

[2] V. Vazov, J. Forsight, Difference Method for Solutions of Partial Differential Equations, Nauka, M., 1963

[3] V. S. Ryaben'kii, A. F. Filippov, About Atability of Difference Equations, Gostechizdat, M., 1956 | MR

[4] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobelnikov, Numerical Methods, Phizmatlit, M., 2003

[5] K. M. Magomedov, “Method of Charactiristics for numerical modelling of space gas flow”, Journal of Numerical Mathematics and Mathematical Physics, 6:2 (1966), 313–325

[6] Wiin-Nielson, “On the application of trajectory methods in numerical forecasting”, Tellus, 11 (1959), 180–186 | DOI

[7] O. Pironneau, “On the Transport-Diffusion Algorithm and Its Applications to the Navier–Stokes Equations”, Numerische Mathematik, 38 (1982), 309–332 | DOI | MR | Zbl

[8] J. Jr. Douglas, T. F. Russell, “Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures”, SIAM J. Numer. Anal., 19:5 (1982), 871–885 | DOI | MR | Zbl

[9] A. V. Vyatkin, E. V. Kuchunova, “A parallel semi-Lagragian algorithm for advection equation”, Educational Resources and Technologies, 2:14 (2016), 423–429

[10] T. N. Phillips, A. J. Williams, “Conservative semi-Lagrangian finite volume schemes”, Numer. Meth. Part. Diff. Eq., 17:4 (2001), 403–425 | DOI | MR | Zbl

[11] T. Arbogast, Wen-Hao Wang, “Convergence of a fully conservative volume corrected characteristic method for transport problems”, SIAM. J. Numer. Anal., 48:3 (2010), 797–823 | DOI | MR | Zbl

[12] A. Efremov, E. Karepova, V. Shaydurov, A. Vyatkin, “A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation”, Journal of Applied Mathematics, 2014 (2014), 610398 | DOI | MR

[13] A. Iske, M. Käser, “Conservative semi-Lagrangian advection on adaptive unstructured meshes”, Numer. Meth. Part. Diff. Eq., 20:3 (2004), 388–411 | DOI | MR | Zbl

[14] F. Losasso, R. Fedkiw, S. Osher, “Spatially adaptive techniques for level set methods and incompressible flow”, Comput. Fluids, 35:10 (2006), 995–1010 | DOI | MR | Zbl

[15] K. M. Terekhov, M. A. Olshanskii, Y. V. Vassilevski, “A semi-Lagrangian method on dynamically adapted octree meshes”, Russ. J. Numer. Anal. Math. Modelling, 30:6 (2015), 363–380 | DOI | MR | Zbl