Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a99, author = {A. V. Vyatkin and E. V. Kuchunova and V. V. Shaydurov}, title = {A {semi-Lagrangian} method on dynamically adapted grid for two-dimensional advection problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1219--1228}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/} }
TY - JOUR AU - A. V. Vyatkin AU - E. V. Kuchunova AU - V. V. Shaydurov TI - A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 1219 EP - 1228 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/ LA - ru ID - SEMR_2016_13_a99 ER -
%0 Journal Article %A A. V. Vyatkin %A E. V. Kuchunova %A V. V. Shaydurov %T A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 1219-1228 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/ %G ru %F SEMR_2016_13_a99
A. V. Vyatkin; E. V. Kuchunova; V. V. Shaydurov. A semi-Lagrangian method on dynamically adapted grid for two-dimensional advection problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1219-1228. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a99/
[1] S. K. Godunov, V. S. Ryaben'kii, Difference Schemes, Nauka, M., 1977 | MR | Zbl
[2] V. Vazov, J. Forsight, Difference Method for Solutions of Partial Differential Equations, Nauka, M., 1963
[3] V. S. Ryaben'kii, A. F. Filippov, About Atability of Difference Equations, Gostechizdat, M., 1956 | MR
[4] N. S. Bahvalov, N. P. Zhidkov, G. M. Kobelnikov, Numerical Methods, Phizmatlit, M., 2003
[5] K. M. Magomedov, “Method of Charactiristics for numerical modelling of space gas flow”, Journal of Numerical Mathematics and Mathematical Physics, 6:2 (1966), 313–325
[6] Wiin-Nielson, “On the application of trajectory methods in numerical forecasting”, Tellus, 11 (1959), 180–186 | DOI
[7] O. Pironneau, “On the Transport-Diffusion Algorithm and Its Applications to the Navier–Stokes Equations”, Numerische Mathematik, 38 (1982), 309–332 | DOI | MR | Zbl
[8] J. Jr. Douglas, T. F. Russell, “Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures”, SIAM J. Numer. Anal., 19:5 (1982), 871–885 | DOI | MR | Zbl
[9] A. V. Vyatkin, E. V. Kuchunova, “A parallel semi-Lagragian algorithm for advection equation”, Educational Resources and Technologies, 2:14 (2016), 423–429
[10] T. N. Phillips, A. J. Williams, “Conservative semi-Lagrangian finite volume schemes”, Numer. Meth. Part. Diff. Eq., 17:4 (2001), 403–425 | DOI | MR | Zbl
[11] T. Arbogast, Wen-Hao Wang, “Convergence of a fully conservative volume corrected characteristic method for transport problems”, SIAM. J. Numer. Anal., 48:3 (2010), 797–823 | DOI | MR | Zbl
[12] A. Efremov, E. Karepova, V. Shaydurov, A. Vyatkin, “A Computational Realization of a Semi-Lagrangian Method for Solving the Advection Equation”, Journal of Applied Mathematics, 2014 (2014), 610398 | DOI | MR
[13] A. Iske, M. Käser, “Conservative semi-Lagrangian advection on adaptive unstructured meshes”, Numer. Meth. Part. Diff. Eq., 20:3 (2004), 388–411 | DOI | MR | Zbl
[14] F. Losasso, R. Fedkiw, S. Osher, “Spatially adaptive techniques for level set methods and incompressible flow”, Comput. Fluids, 35:10 (2006), 995–1010 | DOI | MR | Zbl
[15] K. M. Terekhov, M. A. Olshanskii, Y. V. Vassilevski, “A semi-Lagrangian method on dynamically adapted octree meshes”, Russ. J. Numer. Anal. Math. Modelling, 30:6 (2015), 363–380 | DOI | MR | Zbl