The method for finding activity discontinues in positron emission tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 694-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the inverse problem of a positron emission tomography. It is assumed that the outgoing radiation density is only given, and the task is to find the surface of an activity source. The uniqueness of the solution is proved, and the corresponding solution algorithm is outlined. Some numerical results are presented in graphical form for reconstructing the boundaries of unknown activity sources.
Keywords: positron emission tomography, radiation transfer theory.
@article{SEMR_2016_13_a96,
     author = {I. P. Yarovenko},
     title = {The method for finding activity discontinues in positron emission tomography},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {694--703},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/}
}
TY  - JOUR
AU  - I. P. Yarovenko
TI  - The method for finding activity discontinues in positron emission tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 694
EP  - 703
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/
LA  - ru
ID  - SEMR_2016_13_a96
ER  - 
%0 Journal Article
%A I. P. Yarovenko
%T The method for finding activity discontinues in positron emission tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 694-703
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/
%G ru
%F SEMR_2016_13_a96
I. P. Yarovenko. The method for finding activity discontinues in positron emission tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 694-703. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/

[1] Visvikis D., Cheze-Le Rest C., Jarritt P., “PET technology: current trends and future developments”, British Journal of Radiology, 77:923 (2004), 906–910 | DOI

[2] Yarovenko I. P., “A formula for the gradient of the output signal in positron emission tomography”, Far Eastern Mathematical Journal, 1 (2015), 121–128 | Zbl

[3] Yarovenko I. P., “Numerical experiments with the inhomogeneity indicator in positron emission tomography”, Journal of Applied and Industrial Mathematics, 2 (2012), 261–268 | DOI

[4] Anikonov D. S., “Construction of the inhomogeneity indicator for a medium under irradiation”, Doklady Mathematics, 3 (1997), 949–952

[5] Anikonov D. S., “Integro-differential heterogeneity indicator in tomography problem”, Journal of Inverse and Ill-Posed Problems, 1 (1999), 17–59 | MR | Zbl

[6] Anikonov D. S., Nazarov V. G., “Integro-differential indicator of inhomogeneity from incoplete data”, Doklady Mathematics, 1 (2001), 112–114 | Zbl

[7] Konovalova D. S., “Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography”, Computational Mathematics and Mathematical Physics, 49 (2009), 183–193 | DOI | MR | Zbl

[8] Konovalova D. S., Prokhorov I. V., “The numerical implementation of the algorithm for the stepwise reconstruction in X-ray tomography problem”, Sibirskii Zhurnal Industrial'noi Matematiki, 11:4 (2008), 61–65 | MR | Zbl

[9] Nazarov V. G., Yarovenko I. P., Solnishko N. V., “Numerical experiments in radiative transfer theory taking Compton scattering into account”, Sibirskii Zhurnal Industrial'noi Matematiki, 8:2 (2005), 135–143 | MR

[10] Anikonov D. S., “A formula for the gradient of the transport equation solution”, Journal of Inverse and Ill-Posed Problems, 4:2 (1996), 85–100 | MR | Zbl

[11] Hubbell J. H., Seltzer S. M., Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint ISTIR-5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995

[12] L'Ecuyer P., Cote S., “Implementing a random number package with splitting facilities”, ACM Transactions on Mathematical Software, 17:1 (1991), 98–111 | DOI | MR | Zbl

[13] Lavrentev M. M., Savelev L. Ia., Linear operators and ill-posed problems, Consultants Bureau, New York, 1995 | MR | Zbl

[14] Katsevich A. I., Ramm A. G., “A method for finding discontinuities of functions from the tomographic data”, Lect. Appl. Math., 30 (1993), 115–123 | MR

[15] Prokhorov I. V., “Reconstruction of the interface between media on the ground of tomography data”, Computational Mathematics and Mathematical Physics, 42:10 (2002), 1542–1555 | MR | Zbl