Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a96, author = {I. P. Yarovenko}, title = {The method for finding activity discontinues in positron emission tomography}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {694--703}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/} }
TY - JOUR AU - I. P. Yarovenko TI - The method for finding activity discontinues in positron emission tomography JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 694 EP - 703 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/ LA - ru ID - SEMR_2016_13_a96 ER -
I. P. Yarovenko. The method for finding activity discontinues in positron emission tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 694-703. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a96/
[1] Visvikis D., Cheze-Le Rest C., Jarritt P., “PET technology: current trends and future developments”, British Journal of Radiology, 77:923 (2004), 906–910 | DOI
[2] Yarovenko I. P., “A formula for the gradient of the output signal in positron emission tomography”, Far Eastern Mathematical Journal, 1 (2015), 121–128 | Zbl
[3] Yarovenko I. P., “Numerical experiments with the inhomogeneity indicator in positron emission tomography”, Journal of Applied and Industrial Mathematics, 2 (2012), 261–268 | DOI
[4] Anikonov D. S., “Construction of the inhomogeneity indicator for a medium under irradiation”, Doklady Mathematics, 3 (1997), 949–952
[5] Anikonov D. S., “Integro-differential heterogeneity indicator in tomography problem”, Journal of Inverse and Ill-Posed Problems, 1 (1999), 17–59 | MR | Zbl
[6] Anikonov D. S., Nazarov V. G., “Integro-differential indicator of inhomogeneity from incoplete data”, Doklady Mathematics, 1 (2001), 112–114 | Zbl
[7] Konovalova D. S., “Stepwise solution to an inverse problem for the radiative transfer equation as applied to tomography”, Computational Mathematics and Mathematical Physics, 49 (2009), 183–193 | DOI | MR | Zbl
[8] Konovalova D. S., Prokhorov I. V., “The numerical implementation of the algorithm for the stepwise reconstruction in X-ray tomography problem”, Sibirskii Zhurnal Industrial'noi Matematiki, 11:4 (2008), 61–65 | MR | Zbl
[9] Nazarov V. G., Yarovenko I. P., Solnishko N. V., “Numerical experiments in radiative transfer theory taking Compton scattering into account”, Sibirskii Zhurnal Industrial'noi Matematiki, 8:2 (2005), 135–143 | MR
[10] Anikonov D. S., “A formula for the gradient of the transport equation solution”, Journal of Inverse and Ill-Posed Problems, 4:2 (1996), 85–100 | MR | Zbl
[11] Hubbell J. H., Seltzer S. M., Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint ISTIR-5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995
[12] L'Ecuyer P., Cote S., “Implementing a random number package with splitting facilities”, ACM Transactions on Mathematical Software, 17:1 (1991), 98–111 | DOI | MR | Zbl
[13] Lavrentev M. M., Savelev L. Ia., Linear operators and ill-posed problems, Consultants Bureau, New York, 1995 | MR | Zbl
[14] Katsevich A. I., Ramm A. G., “A method for finding discontinuities of functions from the tomographic data”, Lect. Appl. Math., 30 (1993), 115–123 | MR
[15] Prokhorov I. V., “Reconstruction of the interface between media on the ground of tomography data”, Computational Mathematics and Mathematical Physics, 42:10 (2002), 1542–1555 | MR | Zbl