Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a95, author = {I. E. Svetov and S. V. Maltseva and A. P. Polyakova}, title = {Approximate inversion of operators of two-dimensional vector tomography}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {607--623}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/} }
TY - JOUR AU - I. E. Svetov AU - S. V. Maltseva AU - A. P. Polyakova TI - Approximate inversion of operators of two-dimensional vector tomography JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 607 EP - 623 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/ LA - ru ID - SEMR_2016_13_a95 ER -
%0 Journal Article %A I. E. Svetov %A S. V. Maltseva %A A. P. Polyakova %T Approximate inversion of operators of two-dimensional vector tomography %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 607-623 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/ %G ru %F SEMR_2016_13_a95
I. E. Svetov; S. V. Maltseva; A. P. Polyakova. Approximate inversion of operators of two-dimensional vector tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 607-623. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/
[1] S. J. Norton, “Tomographic reconstruction of 2-D vector fields: application to flow imaging”, Geophysical Journal International, 97:1 (1989), 161–168 | DOI | MR | Zbl
[2] S. A. Johnson, J. F. Greenleaf, M. Tanaka, G. Flandro, “Reconstructing three-dimentionai temperature and fluid velocity vector fields from acoustic transmission measurements”, ISA Transactions, 16:3 (1977), 3–15
[3] J. L. Kinsey, “Fourier transform Doppler spectroscopy: A new means of obtaining velocity — angle distributions in scattering experiments”, Journal of Chemical Physics, 66:6 (1977), 2560–2565 | DOI
[4] R. Koslover, R. McWilliams, “Measurement of multidimensional ion velocity distributions by optical tomography”, Review of Scientific Instruments, 57:10 (1986), 2441–2448 | DOI
[5] V. V. Pikalov, T. S. Melnikova, Plasma tomography, Nauka, Novosibirsk, 1995 (in Russian)
[6] N. P. Poluektov, N. P. Efremov, “New tomographic approach for deconvolution of ion velocity and temperature profiles in a plasma centrifuge”, Journal of Physics D: Applied Physics, 31:8 (1998), 988–995 | DOI
[7] P. J. Basser, “Relationships between diffusion tensor and q-space MRI”, Magnetic Resonance in Medicine, 47:2 (2002), 392–397 | DOI
[8] S. P. Juhlin, “Doppler tomography”, Proc. 15th Annual Intern. Conf. IEEE, EMBS (1993), 212–213
[9] G. Sparr, K. Strahlen, K. Lindstrem, H. W. Persson, “Doppler tomography for vector fields”, Inverse Problems, 11 (1995), 1051–1061 | DOI | MR | Zbl
[10] T. Schuster, “20 years of imaging in vector field tomography: a review”, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Publications of the Scuola Normale Superiore, CRM Series, 7, eds. Y. Censor, M. Jiang, A. K. Louis, Birkhäuser, 2008, 389–424 | MR
[11] M. Defrise, G. T. Gullberg, $3D$-reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005
[12] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl
[13] I. E. Svetov, “Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes”, Numerical Analysis and Applications, 5:3 (2012), 271–283 | DOI | Zbl
[14] I. E. Svetov, “Slice-by-slice numerical solution of $3D$-vector tomography problem”, Journal of Physics: Conference Series, 410 (2013), 012042 | DOI
[15] E. Yu. Derevtsov, I. E. Svetov, “Tomography of tensor fields in the plain”, Eurasian journal of mathematical and computer application, 3:2 (2015), 24–68
[16] I. E. Svetov, “Inversion formulas for recovering the harmonic 2D-vector field by known ray transforms”, Siberian Electronic Mathematical Reports, 12 (2015), 436–446 (in Russian) | Zbl
[17] E. Yu. Derevtsov, I. G. Kashina, “Numerical solution of a vector tomography problem with the help of polynomial bases”, Siberian Journal of Numerical Mathematics, 5:3 (2002), 233–254 (in Russian) | MR | Zbl
[18] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, T. Schuster, “Numerical $B$-spline solution of emission and vector 2$D$-tomography problems for media with absorbtion and refraction”, Proceedings 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08 (Novosibirsk Scientific Center, Novosibirsk, Russia, July 21–25, 2008), 212–217
[19] I. E. Svetov, A. P. Polyakova, “Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography”, Siberian Electronic Mathematical Reports, 10 (2013), 90–108 (in Russian) | MR | Zbl
[20] I. E. Svetov, E. Yu. Derevtsov, Yu. S. Volkov, T. Schuster, “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Mathematics and Computers in Simulation, 97 (2014), 207–223 | DOI | MR
[21] E. Yu. Derevtsov, S. G. Kazantsev, T. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, Journal of Inverse and Ill-Posed Problems, 15:1 (2007), 1–38 | DOI | MR | Zbl
[22] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl
[23] A. P. Polyakova, “Reconstruction of a vector field in a ball from its normal radon transform”, Journal of Mathematical Sciences, 205:3 (2015), 418–439 | DOI | MR | Zbl
[24] A. P. Polyakova, I. E. Svetov, “Numerical Solution of the Problem of Reconstructing a Potential Vector Field in the Unit Ball from Its Normal Radon Transform”, Journal of Applied and Industrial Mathematics, 9:4 (2015), 547–558 | DOI | Zbl
[25] A. K. Louis, Inverse und schlecht gestellte Probleme, Teubner, Stuttgart, 1989 | MR | Zbl
[26] A. K. Louis, P. Maass, “A mollifier method for linear operator equations of the first kind”, Inverse Problems, 6 (1990), 427–440 | DOI | MR | Zbl
[27] A. K. Louis, “Approximate inverse for linear and some nonlinear problems”, Inverse Problems, 12 (1996), 175–190 | DOI | MR | Zbl
[28] A. Rieder, T. Schuster, “The Approximate Inverse in Action with an Application to Computerized Tomography”, SIAM Journal on Numerical Analysis, 37:6 (2000), 1909–1929 | DOI | MR | Zbl
[29] A. Rieder, T. Schuster, “The Approximate Inverse in Action III: 3D-Doppler tomography”, Numerische Mathematik, 97 (2004), 353–378 | DOI | MR | Zbl
[30] T. Schuster, “Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method”, Inverse Problems, 21 (2005), 75–91 | DOI | MR | Zbl
[31] E. Yu. Derevtsov, “An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems”, Journal Inverse Ill-Posed Problems, 13:3 (2005), 213–246 | DOI | MR | Zbl
[32] N. E. Kochin, Vector Calculus and Fundamentals of Tensor Calculus, ONTI, Gos. tekhniko-teoreticheskoe izd., L.–M., 1934 (in Russian)
[33] I. Sneddon, Fourier transforms, McGraw-Hill, New York, 1951 | MR
[34] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972 | Zbl