Approximate inversion of operators of two-dimensional vector tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 607-623

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose two approaches for numerical solution of reconstruction problem of a vector field in an unit disk from the known values of longitudinal and transverse ray transforms. The algorithms are based on the method of approximate inverse. Numerical simulations show that the proposed algorithms yield good results of reconstruction of vector fields.
Keywords: vector tomography, method of approximate inverse, longitudinal ray transform, solenoidal vector field, potential vector field, potential, numerical simulation.
Mots-clés : transverse ray transform, Radon transform
@article{SEMR_2016_13_a95,
     author = {I. E. Svetov and S. V. Maltseva and A. P. Polyakova},
     title = {Approximate inversion of operators of two-dimensional vector tomography},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {607--623},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - S. V. Maltseva
AU  - A. P. Polyakova
TI  - Approximate inversion of operators of two-dimensional vector tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 607
EP  - 623
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/
LA  - ru
ID  - SEMR_2016_13_a95
ER  - 
%0 Journal Article
%A I. E. Svetov
%A S. V. Maltseva
%A A. P. Polyakova
%T Approximate inversion of operators of two-dimensional vector tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 607-623
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/
%G ru
%F SEMR_2016_13_a95
I. E. Svetov; S. V. Maltseva; A. P. Polyakova. Approximate inversion of operators of two-dimensional vector tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 607-623. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/