Approximate inversion of operators of two-dimensional vector tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 607-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose two approaches for numerical solution of reconstruction problem of a vector field in an unit disk from the known values of longitudinal and transverse ray transforms. The algorithms are based on the method of approximate inverse. Numerical simulations show that the proposed algorithms yield good results of reconstruction of vector fields.
Keywords: vector tomography, method of approximate inverse, longitudinal ray transform, solenoidal vector field, potential vector field, potential, numerical simulation.
Mots-clés : transverse ray transform, Radon transform
@article{SEMR_2016_13_a95,
     author = {I. E. Svetov and S. V. Maltseva and A. P. Polyakova},
     title = {Approximate inversion of operators of two-dimensional vector tomography},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {607--623},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - S. V. Maltseva
AU  - A. P. Polyakova
TI  - Approximate inversion of operators of two-dimensional vector tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 607
EP  - 623
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/
LA  - ru
ID  - SEMR_2016_13_a95
ER  - 
%0 Journal Article
%A I. E. Svetov
%A S. V. Maltseva
%A A. P. Polyakova
%T Approximate inversion of operators of two-dimensional vector tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 607-623
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/
%G ru
%F SEMR_2016_13_a95
I. E. Svetov; S. V. Maltseva; A. P. Polyakova. Approximate inversion of operators of two-dimensional vector tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 607-623. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a95/

[1] S. J. Norton, “Tomographic reconstruction of 2-D vector fields: application to flow imaging”, Geophysical Journal International, 97:1 (1989), 161–168 | DOI | MR | Zbl

[2] S. A. Johnson, J. F. Greenleaf, M. Tanaka, G. Flandro, “Reconstructing three-dimentionai temperature and fluid velocity vector fields from acoustic transmission measurements”, ISA Transactions, 16:3 (1977), 3–15

[3] J. L. Kinsey, “Fourier transform Doppler spectroscopy: A new means of obtaining velocity — angle distributions in scattering experiments”, Journal of Chemical Physics, 66:6 (1977), 2560–2565 | DOI

[4] R. Koslover, R. McWilliams, “Measurement of multidimensional ion velocity distributions by optical tomography”, Review of Scientific Instruments, 57:10 (1986), 2441–2448 | DOI

[5] V. V. Pikalov, T. S. Melnikova, Plasma tomography, Nauka, Novosibirsk, 1995 (in Russian)

[6] N. P. Poluektov, N. P. Efremov, “New tomographic approach for deconvolution of ion velocity and temperature profiles in a plasma centrifuge”, Journal of Physics D: Applied Physics, 31:8 (1998), 988–995 | DOI

[7] P. J. Basser, “Relationships between diffusion tensor and q-space MRI”, Magnetic Resonance in Medicine, 47:2 (2002), 392–397 | DOI

[8] S. P. Juhlin, “Doppler tomography”, Proc. 15th Annual Intern. Conf. IEEE, EMBS (1993), 212–213

[9] G. Sparr, K. Strahlen, K. Lindstrem, H. W. Persson, “Doppler tomography for vector fields”, Inverse Problems, 11 (1995), 1051–1061 | DOI | MR | Zbl

[10] T. Schuster, “20 years of imaging in vector field tomography: a review”, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Publications of the Scuola Normale Superiore, CRM Series, 7, eds. Y. Censor, M. Jiang, A. K. Louis, Birkhäuser, 2008, 389–424 | MR

[11] M. Defrise, G. T. Gullberg, $3D$-reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005

[12] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl

[13] I. E. Svetov, “Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes”, Numerical Analysis and Applications, 5:3 (2012), 271–283 | DOI | Zbl

[14] I. E. Svetov, “Slice-by-slice numerical solution of $3D$-vector tomography problem”, Journal of Physics: Conference Series, 410 (2013), 012042 | DOI

[15] E. Yu. Derevtsov, I. E. Svetov, “Tomography of tensor fields in the plain”, Eurasian journal of mathematical and computer application, 3:2 (2015), 24–68

[16] I. E. Svetov, “Inversion formulas for recovering the harmonic 2D-vector field by known ray transforms”, Siberian Electronic Mathematical Reports, 12 (2015), 436–446 (in Russian) | Zbl

[17] E. Yu. Derevtsov, I. G. Kashina, “Numerical solution of a vector tomography problem with the help of polynomial bases”, Siberian Journal of Numerical Mathematics, 5:3 (2002), 233–254 (in Russian) | MR | Zbl

[18] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, T. Schuster, “Numerical $B$-spline solution of emission and vector 2$D$-tomography problems for media with absorbtion and refraction”, Proceedings 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08 (Novosibirsk Scientific Center, Novosibirsk, Russia, July 21–25, 2008), 212–217

[19] I. E. Svetov, A. P. Polyakova, “Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography”, Siberian Electronic Mathematical Reports, 10 (2013), 90–108 (in Russian) | MR | Zbl

[20] I. E. Svetov, E. Yu. Derevtsov, Yu. S. Volkov, T. Schuster, “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Mathematics and Computers in Simulation, 97 (2014), 207–223 | DOI | MR

[21] E. Yu. Derevtsov, S. G. Kazantsev, T. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, Journal of Inverse and Ill-Posed Problems, 15:1 (2007), 1–38 | DOI | MR | Zbl

[22] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl

[23] A. P. Polyakova, “Reconstruction of a vector field in a ball from its normal radon transform”, Journal of Mathematical Sciences, 205:3 (2015), 418–439 | DOI | MR | Zbl

[24] A. P. Polyakova, I. E. Svetov, “Numerical Solution of the Problem of Reconstructing a Potential Vector Field in the Unit Ball from Its Normal Radon Transform”, Journal of Applied and Industrial Mathematics, 9:4 (2015), 547–558 | DOI | Zbl

[25] A. K. Louis, Inverse und schlecht gestellte Probleme, Teubner, Stuttgart, 1989 | MR | Zbl

[26] A. K. Louis, P. Maass, “A mollifier method for linear operator equations of the first kind”, Inverse Problems, 6 (1990), 427–440 | DOI | MR | Zbl

[27] A. K. Louis, “Approximate inverse for linear and some nonlinear problems”, Inverse Problems, 12 (1996), 175–190 | DOI | MR | Zbl

[28] A. Rieder, T. Schuster, “The Approximate Inverse in Action with an Application to Computerized Tomography”, SIAM Journal on Numerical Analysis, 37:6 (2000), 1909–1929 | DOI | MR | Zbl

[29] A. Rieder, T. Schuster, “The Approximate Inverse in Action III: 3D-Doppler tomography”, Numerische Mathematik, 97 (2004), 353–378 | DOI | MR | Zbl

[30] T. Schuster, “Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method”, Inverse Problems, 21 (2005), 75–91 | DOI | MR | Zbl

[31] E. Yu. Derevtsov, “An approach of direct reconstruction of a solenoidal part in vector and tensor tomography problems”, Journal Inverse Ill-Posed Problems, 13:3 (2005), 213–246 | DOI | MR | Zbl

[32] N. E. Kochin, Vector Calculus and Fundamentals of Tensor Calculus, ONTI, Gos. tekhniko-teoreticheskoe izd., L.–M., 1934 (in Russian)

[33] I. Sneddon, Fourier transforms, McGraw-Hill, New York, 1951 | MR

[34] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972 | Zbl