Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a92, author = {A. P. Polyakova and I. E. Svetov}, title = {Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal {Radon} transform}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {154--174}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a92/} }
TY - JOUR AU - A. P. Polyakova AU - I. E. Svetov TI - Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 154 EP - 174 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a92/ LA - ru ID - SEMR_2016_13_a92 ER -
%0 Journal Article %A A. P. Polyakova %A I. E. Svetov %T Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 154-174 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a92/ %G ru %F SEMR_2016_13_a92
A. P. Polyakova; I. E. Svetov. Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 154-174. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a92/
[1] Yu. A. Kravtsov, Yu. I. Orlov, Geometrical optics of inhomogeneous media, Wave phenomena, 6, Springer, 1990 | DOI | MR
[2] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR
[3] R. Novikov, V. Sharafutdinov, “On the problem of polarization tomography, I”, Inverse Problems, 23:3 (2007), 1229–1257 | DOI | MR | Zbl
[4] V. A. Sharafutdinov, “The problem of polarization tomography, II”, Inverse Problems, 24:3 (2008), 035010 | DOI | MR | Zbl
[5] V. V. Pikalov, T. S. Melnikova, Plasma tomography, Nauka, Novosibirsk, 1995 (in Russian)
[6] H. K. Aben, Integral photoelasticity, Valgus, Tallin, 1975 (in Russian)
[7] H. Aben, A. Puro, “Photoelastic tomography for three-dimensional flow birefringence studies”, Inverse Problems, 13:2 (1997), 215–221 | DOI | MR | Zbl
[8] A. Puro, “Magneto-photoelasticity as parametric tensor field tomography”, Inverse problems, 14:5 (1998), 1315–1330 | DOI | Zbl
[9] V. Sharafutdinov, J. Wang, “Tomography of small residual stresses”, Inverse Problems, 28:6 (2012), 065017 | DOI | MR | Zbl
[10] W. Lionheart, P. Withers, “Diffraction tomography of strain”, Inverse Problems, 31:4 (2015), 045005 | DOI | MR | Zbl
[11] V. P. Karassiov, “Polarization Tomography of Quantum Radiation: Theoretical Aspects and Operator Approach”, Theoretical and Mathematical Physics, 145:3 (2005), 1666–1677 | DOI | MR | Zbl
[12] V. Y. Panin, G. L. Zeng, M. Defrise, G. T. Gullberg, “Diffusion tensor MR imaging of principal directions: A tensor tomography approach”, Phys. Med. Biol., 47 (2002), 2737–2757 | DOI
[13] V. M. Gelikonov, G. V. Gelikonov, “New approach to crosspolarized optical coherence tomography based on orthogonal arbitrarily polarized modes”, Laser Phys. Lett., 3:9 (2006), 445–451 | DOI
[14] E. Y. Derevtsov, “An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems”, Journal of Inverse and Ill-Posed Problems, 13:3–6 (2005), 213–246 | DOI | MR | Zbl
[15] I. E. Svetov, A. P. Polyakova, “Reconstruction of 2-Tensor Fields, Given in a Unit Circle, by Their Ray Transform Based on LSM with $B$-Splines”, Numerical Analysis and Applications, 3:2 (2010), 151–164 | DOI | Zbl
[16] I. E. Svetov, “Reconstruction of solenoidal 2-tensor fields, given in a unit disk, in their longitudinal ray transforms”, Proceedings of first international youth school-conference “Theory and numerical methods of inverse and ill-conditioned problems solving”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 139–149 (in Russian)
[17] A. Denisjuk, “Inversion of the X-ray transform for 3D symmetric tensor fields with sources on a curve”, Inverse Problems, 22:2 (2006), 399–411 | DOI | MR | Zbl
[18] V. Sharafutdinov, “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Problems, 23:6 (2007), 2603–2627 | DOI | MR | Zbl
[19] M. Defrise, G. T. Gullberg, $3D$ reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005
[20] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, Society for industrial and applied mathematics, 15:3 (1984), 621–633 | MR | Zbl
[21] P. Maass, “The X-ray transform: Singular value decomposition and resolution”, Inverse problems, 3:4 (1987), 727–741 | DOI | MR
[22] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR | Zbl
[23] E. Yu. Derevtsov, A. P. Polyakova, “Solution of the Integral Geometry Problem for 2-Tensor Fields by the Singular Value Decomposition Method”, Journal of Mathematical Sciences, 202:1 (2014), 50–71 | DOI | MR
[24] Polyakova A. P., “Reconstruction of a vector field in a ball from its normal Radon transform”, Journal of Mathematical Sciences, 205:3 (2015), 418–439 | DOI | MR
[25] I. E. Svetov, A. P. Polyakova, “Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography”, Siberian Electronic Mathematical Reports, 10 (2013), 90–108 (in Russian) | MR | Zbl
[26] I. E. Svetov, A. P. Polyakova, “Approximate solution of two-dimensional 2-tensor tomography problem using truncated singular value decomposition”, Siberian Electronic Mathematical Reports, 12 (2015), 480–499 (in Russian)
[27] Polyakova A. P., Svetov I. E., “Numerical Solution of the Problem of Reconstructing a Potential Vector Field in the Unit Ball from Its Normal Radon Transform”, Journal of Applied and Industrial Mathematics, 9:4 (2015), 547–558 | DOI
[28] S. Deans, The Radon Transform and Some of its Applications, Wiley, New York, 1983 | MR | Zbl
[29] V. A. Tcheverda, V. I. Kostin, “r-pseudoinverse for compact operators in Hilbert spaces: existence and stability”, Journal of Inverse and Ill-Posed Problems, 3:2 (1995), 131–148 | MR
[30] V. A. Tcheverda, V. I. Kostin, “r-pseudoinverse for compact operator”, Proceedings of first international youth school-conference “Theory and numerical methods of inverse and ill-conditioned problems solving”, Part I, Siberian Electronic Mathematical Reports, 7, 2010, 258–282 (in Russian)