Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 101-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gauss quadrature for a function with large gradients in the exponential boundary layer is investigated. In the case of such function the application of Gauss formula on the uniform grid leads to significant errors. The accuracy of Gauss quadrature on Shishkin mesh is investigated. The error of the quadrature formula is estimated. This estimate is uniform with respect to the small parameter. Results of numerical experiments are discussed.
Keywords: definite integral, boundary layer, Shishkin mesh
Mots-clés : large gradients, Gauss quadrature, error estimation.
@article{SEMR_2016_13_a91,
     author = {A. I. Zadorin},
     title = {Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a91/}
}
TY  - JOUR
AU  - A. I. Zadorin
TI  - Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 101
EP  - 110
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a91/
LA  - ru
ID  - SEMR_2016_13_a91
ER  - 
%0 Journal Article
%A A. I. Zadorin
%T Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 101-110
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a91/
%G ru
%F SEMR_2016_13_a91
A. I. Zadorin. Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 101-110. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a91/

[1] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobel'kov, Numerical Methods, Nauka, M., 1987 (in Russian) | Zbl

[2] Nauka, M., 1966 | Zbl

[3] G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 (in Russian)

[4] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012 | Zbl

[5] A. I. Zadorin, N. A. Zadorin, “Quadrature formulas for functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 51:11 (2011), 1837–1846 | Zbl

[6] A. I. Zadorin, N. A. Zadorin, “An Analogue of the Four-Point Newton–Cotes Formula for a Function with a boundary-Layer Component”, Numerical Analysis and Applications, 6:4 (2013), 268–278 | Zbl

[7] A. Zadorin, N. Zadorin, “Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component”, Lecture Notes in Computer Science, 8236, Springer, Berlin, 2013, 540–546 | Zbl

[8] A. I. Zadorin, “Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numerical Analysis and Applications, 8:3 (2015), 235–247

[9] A. I. Zadorin, N. A. Zadorin, “Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh”, Siberian Electronic Mathematical Reports, 10 (2013), 491–503 (in Russian) | Zbl

[10] T. Lins, “The Necessity of Shishkin Decompositions”, Applied Mathematics Letters, 14 (2001), 891–896 | Zbl