Seismic in composite media: elastic and poroelastic components
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 75-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider elastic and poroelastic media having a common interface. We derive the macroscopic mathematical models for seismic wave propagation through these two different media as a homogenization of the exact mathematical model at the microscopic level. They consist of seismic equations for the each component and boundary conditions at the common interface, which separates different media. To do this we use the two-scale expansion method in the corresponding integral identities, defining the weak solution. Our results we illustrate with the numerical implementations of the inverse problem for the simplest model.
Keywords: seismic, two-scale expansion method, full wavefield inversion, numerical simulation.
@article{SEMR_2016_13_a90,
     author = {A. Meirmanov and S. Mukhambetzhanov and M. Nurtas},
     title = {Seismic in composite media: elastic and poroelastic components},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/}
}
TY  - JOUR
AU  - A. Meirmanov
AU  - S. Mukhambetzhanov
AU  - M. Nurtas
TI  - Seismic in composite media: elastic and poroelastic components
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 75
EP  - 88
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/
LA  - en
ID  - SEMR_2016_13_a90
ER  - 
%0 Journal Article
%A A. Meirmanov
%A S. Mukhambetzhanov
%A M. Nurtas
%T Seismic in composite media: elastic and poroelastic components
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 75-88
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/
%G en
%F SEMR_2016_13_a90
A. Meirmanov; S. Mukhambetzhanov; M. Nurtas. Seismic in composite media: elastic and poroelastic components. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 75-88. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/

[1] M. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low-frequency range”, Journal of the Acoustical Society of America, 28 (1955), 168–178 | DOI | MR

[2] M. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II: Higher frequency range”, Journal of the Acoustical Society of America, 28 (1955), 179–191 | DOI | MR

[3] M. Biot, “Generalized theory of seismic propagation in porous dissipative media”, J. Acoust. Soc. Am., 34 (1962), 1256–1264 | MR

[4] J. G. Berryman, “Seismic wave attenuation in fluid-saturated porous media”, J. Pure Appl. Geophys. (PAGEOPH), 128 (1988), 423–432 | DOI

[5] J. G. Berryman, “Effective medium theories for multicomponent poroelastic composites”, ASCE Journal of Engineering Mechanics, 132:5 (2006), 519–531 | DOI

[6] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl

[7] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer-Verlag, 1980 | MR

[8] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Press, Paris, 2013 | MR

[9] A. Meirmanov, “A description of seismic seismic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[10] A. Mikelić, “On the Efective Boundary Conditions Between Diferent Flow Regions”, Proceedings of the I Conference on Applied Mathematics and Computation (Dubrovnik, Croatia, September 13–18, 1999), 21–37 | MR | Zbl

[11] A. Bensoussan, J. L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978 | MR | Zbl

[12] N. Bakhvalov, G. Panasenko, Homogenization: averaging processes in periodic media, Math. Appl., 36, Kluwer Academic Publishers, Dordrecht, 1990 | MR

[13] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[14] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[15] A. Fichtner, Full Seismic Waveform Modelling and Inversion, Springer-Verlag, Berlin–Heidelberg, 2011, 113–140 | DOI

[16] M. I. Protasov, G. V. Reshetova, V. A. Tcheverda, “Fracture detection by Gaussian beam imaging of seismic data and image spectrum analysis”, Geophysical Prospecting, 2015 (to appear)

[17] J. H. Mathews, K. D. Fink, Numerical methods using Matlab, chapter 8, 4th edition, Prentice-Hall Inc., 2004, 430–436

[18] Protasov M. I., Tcheverda V. A., “True amplitude imaging by inverse generalized Radon transform based on Gaussian beam decomposition of the acoustic Green's function”, Geophysical Prospecting, 59:2 (2011), 197–209 | DOI

[19] Protasov M. I., Tcheverda V. A., “True-amplitude elastic Gaussian beam imaging of multi-component walk-away VSP data”, Geophysical Prospecting, 60:6 (2012), 1030–1042 | DOI