Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a90, author = {A. Meirmanov and S. Mukhambetzhanov and M. Nurtas}, title = {Seismic in composite media: elastic and poroelastic components}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {75--88}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/} }
TY - JOUR AU - A. Meirmanov AU - S. Mukhambetzhanov AU - M. Nurtas TI - Seismic in composite media: elastic and poroelastic components JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 75 EP - 88 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/ LA - en ID - SEMR_2016_13_a90 ER -
A. Meirmanov; S. Mukhambetzhanov; M. Nurtas. Seismic in composite media: elastic and poroelastic components. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 75-88. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a90/
[1] M. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I: Low-frequency range”, Journal of the Acoustical Society of America, 28 (1955), 168–178 | DOI | MR
[2] M. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II: Higher frequency range”, Journal of the Acoustical Society of America, 28 (1955), 179–191 | DOI | MR
[3] M. Biot, “Generalized theory of seismic propagation in porous dissipative media”, J. Acoust. Soc. Am., 34 (1962), 1256–1264 | MR
[4] J. G. Berryman, “Seismic wave attenuation in fluid-saturated porous media”, J. Pure Appl. Geophys. (PAGEOPH), 128 (1988), 423–432 | DOI
[5] J. G. Berryman, “Effective medium theories for multicomponent poroelastic composites”, ASCE Journal of Engineering Mechanics, 132:5 (2006), 519–531 | DOI
[6] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl
[7] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer-Verlag, 1980 | MR
[8] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Press, Paris, 2013 | MR
[9] A. Meirmanov, “A description of seismic seismic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[10] A. Mikelić, “On the Efective Boundary Conditions Between Diferent Flow Regions”, Proceedings of the I Conference on Applied Mathematics and Computation (Dubrovnik, Croatia, September 13–18, 1999), 21–37 | MR | Zbl
[11] A. Bensoussan, J. L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978 | MR | Zbl
[12] N. Bakhvalov, G. Panasenko, Homogenization: averaging processes in periodic media, Math. Appl., 36, Kluwer Academic Publishers, Dordrecht, 1990 | MR
[13] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[14] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl
[15] A. Fichtner, Full Seismic Waveform Modelling and Inversion, Springer-Verlag, Berlin–Heidelberg, 2011, 113–140 | DOI
[16] M. I. Protasov, G. V. Reshetova, V. A. Tcheverda, “Fracture detection by Gaussian beam imaging of seismic data and image spectrum analysis”, Geophysical Prospecting, 2015 (to appear)
[17] J. H. Mathews, K. D. Fink, Numerical methods using Matlab, chapter 8, 4th edition, Prentice-Hall Inc., 2004, 430–436
[18] Protasov M. I., Tcheverda V. A., “True amplitude imaging by inverse generalized Radon transform based on Gaussian beam decomposition of the acoustic Green's function”, Geophysical Prospecting, 59:2 (2011), 197–209 | DOI
[19] Protasov M. I., Tcheverda V. A., “True-amplitude elastic Gaussian beam imaging of multi-component walk-away VSP data”, Geophysical Prospecting, 60:6 (2012), 1030–1042 | DOI