The qualitative analysis of the plane polynomial Darboux systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1170-1186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local and global behavior of the trajectories of polynomial differential systems of the form $\dot x= x+p_n(x,y)$, $\dot y=y+q_n(x,y)$.
Keywords: polynomial systems, singular points, Poincaré equator
Mots-clés : limit cycles, phase portraits.
@article{SEMR_2016_13_a88,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {The qualitative analysis of the plane polynomial {Darboux} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1170--1186},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a88/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - The qualitative analysis of the plane polynomial Darboux systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1170
EP  - 1186
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a88/
LA  - ru
ID  - SEMR_2016_13_a88
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T The qualitative analysis of the plane polynomial Darboux systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1170-1186
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a88/
%G ru
%F SEMR_2016_13_a88
E. P. Volokitin; V. M. Cheresiz. The qualitative analysis of the plane polynomial Darboux systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1170-1186. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a88/

[1] Darboux G., “Mémoire sur les équations différentielles algébrique du premier ordre et du premier degré (Mélanges)”, Bull. Sci. Math., 1878, 60–96 ; 123–144 ; 151–200 | Zbl

[2] Rozov N. Kh., “Darbu uravneniye”, Matematicheskaya entsiklopediya, v. 2, Sovetskaya entsiklopediya, M., 1979 (Russian)

[3] Boyarchuk A. K., Golovach G. P., Spravochnoye posobiye po vysshey matematike, Ch. 1, v. 5, Izd. 5-e, KomKniga, M., 2006 (Russian)

[4] Bendjeddou A., Llibre J., Salhi T., “Dynamics of the polynomial differential systems with ogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl

[5] Berlinskiĭ, “A qualitative investigation of the differential equation $dy/dx=(y+a_0x^2+a_1 xy+a_2 y^2)/(x+b_0 x^2+b_1xy+b_2y^2)$”, Differencial'nye Uravneuija, 2 (1966), 353–360 | MR

[6] Yan Qian Ye, et al., Theory of Limit Cycles, Trans. Math. Monogr., 66, Amer. Math. Soc., 1986 | MR | Zbl

[7] Arnol'd V. I., Ordinary differential equations, Third edition, Nauka, M., 1984 (Russian) | MR | Zbl

[8] Andronov A. A., et al., Qualitative theory of dinamic sysyems of the second order, Nauka, M., 1966 (Russian) | MR

[9] Velasco E. A. G., “Generic propeties of polynomial vector fields at infinity”, Trans. Amer. Math. Soc., 143 (1969), 201–222 | DOI | MR | Zbl

[10] Azamov A., Suvanov Sh., Tilavov A., “Studing of behavior at infinity of vector fields on Poincaré's sphere”, Qual. Theory Dyn. Sys., 15:1 (2016), 211–220 | DOI | MR | Zbl

[11] Cima A., Llibre J., “Algebraic and topological classification of the homogeneous cubic vector fields in the plane”, J. Math. Anal. Appl., 147:2 (1990), 420–448 | DOI | MR | Zbl

[12] Markus L., “Global structure of ordinary differential equations in the plane”, Trans. Amer. Math. Soc., 76 (1954), 127–148 | DOI | MR | Zbl

[13] Neumann D. A., “Classification of continuous flows on 2-manifolds”, Proc. Amer. Math. Soc., 48:1 (1975), 73–81 | DOI | MR | Zbl

[14] Bogopolsky O. V., An introduction to the theory of groups, Institut kompyuternykh issledovany, Izhevsk, 2002 (Russian)

[15] Volokitin E. P., Cheresiz V. M., “Singular points and first integrals of holomorphic systems”, J. Math. Sci. (N. Y.), 203:4 (2014), 605–620 (Russian) | DOI | MR

[16] Volokitin E. P., “Algebraic first integrals of the polynomial systems satisfying the Cauchy–Riemann conditions”, Qual. Theory Dyn. Sys., 15:2 (2016), 575–596 | DOI | MR