Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a85, author = {I. V. Kuznetsov}, title = {Kinetic formulation of forward-backward parabolic equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {930--949}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a85/} }
I. V. Kuznetsov. Kinetic formulation of forward-backward parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 930-949. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a85/
[1] V. N. Monakhov, “Reciprocal Flows in Boundary Layer”, Dinamika Sploshnoy Sredy, 113 (1998), 107–113 (in Russian) | MR | Zbl
[2] V. N. Monakhov, S. V. Popov, “Contact Problems of Mathematical Physics”, Dinamika Sploshnoy Sredy, 116 (2000), 62–72 (in Russian) | MR | Zbl
[3] A. K. Aziz, D. A. French, S. Jensen, B. Kellogg, “Origins, Analysis, Numerical Analysis, and Numerical Approximation of a Forward-Backward Parabolic Problem”, Mathematical Modelling and Numerical Analysis M2AN, 33 (1999), 895–922 | DOI | MR | Zbl
[4] S. N. Kruzhkov, “First Order Quasilinear Equations in Several Independent Variables”, Mathematics of the USSR-Sbornik, 10 (1970), 217–243 | DOI | Zbl
[5] C. Bardos, A. Y. Le Roux, J.-C. Nedelec, “First Order Quasilinear Equations with Boundary Conditions”, Communications in Partial Differential Equations, 4 (1979), 1017–1034 | DOI | MR | Zbl
[6] F. Dubois, Ph. LeFloch, “Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws”, Journal of Differential Equations, 71 (1988), 93–122 | DOI | MR | Zbl
[7] F. Otto, “Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation”: J. Málek, J. Nečas, M. Rokyta, M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDE's, Chap. 2 §.2.6, 2.7, 2.8, Chapman, 1996, 95–143
[8] A. Vasseur, “Strong Traces for Solutions of Multidimensional Scalar Conservation Laws”, Archive for Rational Mechanics and Analysis, 160 (2001), 181–193 | DOI | MR | Zbl
[9] E. Yu. Panov, “Existence of Strong Traces for Generalized Solutions of Multidimensional Scalar Conservation Laws”, Journal of Hyperbolic Differential Equations, 2 (2005), 885–908 | DOI | MR | Zbl
[10] E. Yu. Panov, “Existence of Strong Trances for Quasi-Solutions of Multidimensional Conservation Laws”, Journal of Hyperbolic Differential Equations, 4 (2007), 729–770 | DOI | MR | Zbl
[11] Y.-S. Kwon, A. Vasseur, “Strong Traces for Solutions of Scalar Conservation Laws with General Flux”, Archive for Rational Mechanics and Analysis, 185 (2007), 495–513 | DOI | MR | Zbl
[12] P.-L. Lions, B. Perthame, E. Tadmor, “A Kinetic Formulation of Multidimensional Scalar Conservation Laws and Related Equations”, Journal of the American Mathematical Society, 7 (1994), 169–191 | DOI | MR | Zbl
[13] B. Perthame, “Uniqueness Error Estimates in First Order Quasilinear Conservation Laws via the Kinetic Entropy Defect Measure”, Journal de Mathématiques Pures et Appliquées, 77 (1998), 1055–1064 | DOI | MR | Zbl
[14] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, Oxford, 2002 | MR | Zbl
[15] Y.-S. Kwon, “Well-Posedness for Entropy Solution of Multidimensional Scalar Conservation Laws with Strong Boundary Condition”, Journal of Mathematical Analysis and Applications, 340 (2008), 543–549 | DOI | MR | Zbl
[16] G. M. Coclite, K. H. Karlsen, Y.-S. Kwon, “Initial-Boundary Value Problems for Conservation Laws with Source Terms and the Degasperis-Procesi Equation”, Journal of Functional Analysis, 257 (2009), 3823–3857 | DOI | MR | Zbl
[17] J. Carrillo, “Entropy Solutions for Nonlinear Degenerate Problems”, Archive for Rational Mechanics and Analysis, 147 (1999), 269–361 | DOI | MR | Zbl
[18] K. Ammar, “Degenerate Triply Nonlinear Problems with Nonhomogeneous Boundary Conditions”, Central European Journal of Mathematics, 8 (2010), 548–568 | DOI | MR | Zbl
[19] S. A. Sazhenkov, “The Genuinely Nonlinear Graetz–Nusselt Ultraparabolic Equation”, Siberian Mathematical Journal, 47 (2006), 355–375 | DOI | MR | Zbl
[20] E. Yu. Panov, “Ultra-Parabolic Equations with Rough Coefficients. Entropy Solutions and Strong Precompactness Property”, Journal of Mathematical Sciences, 159 (2009), 180–228 | DOI | MR | Zbl
[21] I. V. Kuznetsov, “Traces of Entropy Solutions to Second Order Forward-Backward Parabolic Equations”, Journal of Mathematical Sciences, 211 (2015), 767–788 | DOI | MR | Zbl
[22] I. V. Kuznetsov, “Entropy Solutions of Differential Equations with Variable Parabolicity Direction”, Journal of Mathematical Sciences, 202 (2014), 91–112 | DOI | MR | Zbl
[23] M. Lazar, D. Mitrovic, “Velocity Averaging — a General Framework”, Dynamics of Partial Differential Equations, 9 (2012), 239–260 | DOI | MR | Zbl
[24] G.-Q. Chen, B. Perthame, “Large Time Behavior of Periodic Solutions to Anisotropic Degenerate Parabolic-Hyperbolic Equations”, Proceedings of the American Mathematical Society, 137 (2009), 3003–3011 | DOI | MR | Zbl
[25] S. Hwang, A. E. Tzavaras, “Kinetic Decomposition of Approximate Solutions to Conservation Laws: Application to Relaxation and Diffusion-Dispersion Approximations”, Communications in Partial Differential Equations, 27 (2002), 1229–1254 | DOI | MR | Zbl
[26] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, 1968 | MR | Zbl
[27] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001 | MR | Zbl
[28] M. Borsuk, V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Elsevier, 2006 | MR | Zbl
[29] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Annali di Matematica Pura ed Applicata, 146 (1987), 65–96 | DOI | MR | Zbl
[30] X. Chen, J.-G. Liu, “Two Nonlinear Compactness Theorems in $L^p(0,T;B)$”, Applied Mathematics Letters, 25 (2012), 2252–2257 | DOI | MR | Zbl