Kinetic formulation of forward-backward parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 930-949.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have proved that Dirichlet boundary value problem for nonlinear forward-backward parabolic equation has the unique entropy solution. The main difficulty is that initial and final conditions must be formulated in the form of inequalities. We have used here kinetic formulation of the boundary value problem.
Keywords: entropy solution, kinetic solution, forward-backward parabolic equation.
@article{SEMR_2016_13_a85,
     author = {I. V. Kuznetsov},
     title = {Kinetic formulation of forward-backward parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {930--949},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a85/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
TI  - Kinetic formulation of forward-backward parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 930
EP  - 949
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a85/
LA  - en
ID  - SEMR_2016_13_a85
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%T Kinetic formulation of forward-backward parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 930-949
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a85/
%G en
%F SEMR_2016_13_a85
I. V. Kuznetsov. Kinetic formulation of forward-backward parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 930-949. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a85/

[1] V. N. Monakhov, “Reciprocal Flows in Boundary Layer”, Dinamika Sploshnoy Sredy, 113 (1998), 107–113 (in Russian) | MR | Zbl

[2] V. N. Monakhov, S. V. Popov, “Contact Problems of Mathematical Physics”, Dinamika Sploshnoy Sredy, 116 (2000), 62–72 (in Russian) | MR | Zbl

[3] A. K. Aziz, D. A. French, S. Jensen, B. Kellogg, “Origins, Analysis, Numerical Analysis, and Numerical Approximation of a Forward-Backward Parabolic Problem”, Mathematical Modelling and Numerical Analysis M2AN, 33 (1999), 895–922 | DOI | MR | Zbl

[4] S. N. Kruzhkov, “First Order Quasilinear Equations in Several Independent Variables”, Mathematics of the USSR-Sbornik, 10 (1970), 217–243 | DOI | Zbl

[5] C. Bardos, A. Y. Le Roux, J.-C. Nedelec, “First Order Quasilinear Equations with Boundary Conditions”, Communications in Partial Differential Equations, 4 (1979), 1017–1034 | DOI | MR | Zbl

[6] F. Dubois, Ph. LeFloch, “Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws”, Journal of Differential Equations, 71 (1988), 93–122 | DOI | MR | Zbl

[7] F. Otto, “Conservation Laws in Bounded Domains, Uniqueness and Existence via Parabolic Approximation”: J. Málek, J. Nečas, M. Rokyta, M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDE's, Chap. 2 §.2.6, 2.7, 2.8, Chapman, 1996, 95–143

[8] A. Vasseur, “Strong Traces for Solutions of Multidimensional Scalar Conservation Laws”, Archive for Rational Mechanics and Analysis, 160 (2001), 181–193 | DOI | MR | Zbl

[9] E. Yu. Panov, “Existence of Strong Traces for Generalized Solutions of Multidimensional Scalar Conservation Laws”, Journal of Hyperbolic Differential Equations, 2 (2005), 885–908 | DOI | MR | Zbl

[10] E. Yu. Panov, “Existence of Strong Trances for Quasi-Solutions of Multidimensional Conservation Laws”, Journal of Hyperbolic Differential Equations, 4 (2007), 729–770 | DOI | MR | Zbl

[11] Y.-S. Kwon, A. Vasseur, “Strong Traces for Solutions of Scalar Conservation Laws with General Flux”, Archive for Rational Mechanics and Analysis, 185 (2007), 495–513 | DOI | MR | Zbl

[12] P.-L. Lions, B. Perthame, E. Tadmor, “A Kinetic Formulation of Multidimensional Scalar Conservation Laws and Related Equations”, Journal of the American Mathematical Society, 7 (1994), 169–191 | DOI | MR | Zbl

[13] B. Perthame, “Uniqueness Error Estimates in First Order Quasilinear Conservation Laws via the Kinetic Entropy Defect Measure”, Journal de Mathématiques Pures et Appliquées, 77 (1998), 1055–1064 | DOI | MR | Zbl

[14] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, Oxford, 2002 | MR | Zbl

[15] Y.-S. Kwon, “Well-Posedness for Entropy Solution of Multidimensional Scalar Conservation Laws with Strong Boundary Condition”, Journal of Mathematical Analysis and Applications, 340 (2008), 543–549 | DOI | MR | Zbl

[16] G. M. Coclite, K. H. Karlsen, Y.-S. Kwon, “Initial-Boundary Value Problems for Conservation Laws with Source Terms and the Degasperis-Procesi Equation”, Journal of Functional Analysis, 257 (2009), 3823–3857 | DOI | MR | Zbl

[17] J. Carrillo, “Entropy Solutions for Nonlinear Degenerate Problems”, Archive for Rational Mechanics and Analysis, 147 (1999), 269–361 | DOI | MR | Zbl

[18] K. Ammar, “Degenerate Triply Nonlinear Problems with Nonhomogeneous Boundary Conditions”, Central European Journal of Mathematics, 8 (2010), 548–568 | DOI | MR | Zbl

[19] S. A. Sazhenkov, “The Genuinely Nonlinear Graetz–Nusselt Ultraparabolic Equation”, Siberian Mathematical Journal, 47 (2006), 355–375 | DOI | MR | Zbl

[20] E. Yu. Panov, “Ultra-Parabolic Equations with Rough Coefficients. Entropy Solutions and Strong Precompactness Property”, Journal of Mathematical Sciences, 159 (2009), 180–228 | DOI | MR | Zbl

[21] I. V. Kuznetsov, “Traces of Entropy Solutions to Second Order Forward-Backward Parabolic Equations”, Journal of Mathematical Sciences, 211 (2015), 767–788 | DOI | MR | Zbl

[22] I. V. Kuznetsov, “Entropy Solutions of Differential Equations with Variable Parabolicity Direction”, Journal of Mathematical Sciences, 202 (2014), 91–112 | DOI | MR | Zbl

[23] M. Lazar, D. Mitrovic, “Velocity Averaging — a General Framework”, Dynamics of Partial Differential Equations, 9 (2012), 239–260 | DOI | MR | Zbl

[24] G.-Q. Chen, B. Perthame, “Large Time Behavior of Periodic Solutions to Anisotropic Degenerate Parabolic-Hyperbolic Equations”, Proceedings of the American Mathematical Society, 137 (2009), 3003–3011 | DOI | MR | Zbl

[25] S. Hwang, A. E. Tzavaras, “Kinetic Decomposition of Approximate Solutions to Conservation Laws: Application to Relaxation and Diffusion-Dispersion Approximations”, Communications in Partial Differential Equations, 27 (2002), 1229–1254 | DOI | MR | Zbl

[26] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, 1968 | MR | Zbl

[27] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001 | MR | Zbl

[28] M. Borsuk, V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Elsevier, 2006 | MR | Zbl

[29] J. Simon, “Compact sets in the space $L^p(0,T;B)$”, Annali di Matematica Pura ed Applicata, 146 (1987), 65–96 | DOI | MR | Zbl

[30] X. Chen, J.-G. Liu, “Two Nonlinear Compactness Theorems in $L^p(0,T;B)$”, Applied Mathematics Letters, 25 (2012), 2252–2257 | DOI | MR | Zbl