Eigenvalues of boundary value problem for a hybrid system of differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 911-922.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a boundary-value problem for a hybrid system of differential equations. A hybrid system of differential equations is understood as a system of differential equations composed of ordinary differential equations and partial differential equations. In the capacity of the theoretical foundations of our approach to investigation of the boundary-value problem for the hybrid system of differential equations we propose a method of finding eigenvalues for the boundary-value problem. Application of the Hamilton variation principle for constructing the equations of total dynamics for the systems of interconnected rigid bodies attached to the rod by elastic-damping links necessitates consideration of hybrid systems of differential equations.
Keywords: hybrid system of differential equations, eigenvalues of boundary value problem.
@article{SEMR_2016_13_a84,
     author = {A. D. Mizhidon and K. A. Mizhidon},
     title = {Eigenvalues of boundary value problem for a hybrid system of differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {911--922},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a84/}
}
TY  - JOUR
AU  - A. D. Mizhidon
AU  - K. A. Mizhidon
TI  - Eigenvalues of boundary value problem for a hybrid system of differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 911
EP  - 922
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a84/
LA  - ru
ID  - SEMR_2016_13_a84
ER  - 
%0 Journal Article
%A A. D. Mizhidon
%A K. A. Mizhidon
%T Eigenvalues of boundary value problem for a hybrid system of differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 911-922
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a84/
%G ru
%F SEMR_2016_13_a84
A. D. Mizhidon; K. A. Mizhidon. Eigenvalues of boundary value problem for a hybrid system of differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 911-922. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a84/

[1] S. G. Barguev, A. D. Mizhidon, “Determination of the eigen-frequencies of a simplest mechanical system on an elastic basement”, Bulletin of Buryat state university, 2009, no. 9, 58–63 (in Russian)

[2] A. D. Mizhidon, S. G. Barguev, N. V. Lebedeva, “Investigation of a vibro-protection system with elastic basement”, Modern Technologies. System Analysis. Modeling., 2009, no. 2(22), 13–20 (in Russian)

[3] A. D. Mizhidon, S. G. Barguev, “On eigen-vibrations of a cascade-type mechanical system mounted on an elastic rod”, Bulletin of ESSUTM, 2010, no. 1, 26–32 (in Russian)

[4] S. G. Barguev, E. V. Eltoshkina, A. D. Mizhidon, M. Zh. Dabaeva (M. Zh. Tsytsyrenova), “Investigation of the possibility of extinguishing of $n$ masses mounted on an elastic rod”, Modern Technologies. System Analysis. Modeling, 2010, no. 4(28), 78–84 (in Russian)

[5] S. G. Barguev, A. D. Mizhidon, “Solution of the initial-boundary-value problem of the oscillator mounted on the elastic rod”, Bulletin of BSU. Mathematics, Informatics, 2012, no. 2, 63–68 (in Russian)

[6] A. D. Mizhidon, S. G. Barguev, “A boundary-value problem for one hybrid system of differential equations”, Bulletin of Buryat state university, 2013, no. 9, 130–137 (in Russian)

[7] A. D. Mizhidon, M. Zh. Dabaeva (M. Zh. Tsytsyrenova), “A generalized mathematical model for a system of rigid bodies mounted on a flexible rod”, Bulletin of ESSUTM, 2013, no. 6, 5–12 (in Russian)

[8] A. D. Mizhidon, M. Zh. Dabaeva, “Mathematical modeling and the account for damping properties of flexible links in a generalized mathematical model of a system with rigid bodies mounted on an elastic rod”, Bulletin of ESSUTM, 2015, no. 2, 10–17 (in Russian) | MR

[9] S. Kukla, B. Posiadala, “Free vibrations of beams with elastically mounted masses”, Journal of Sound and Vibration, 175:4 (1994), 557–564 | DOI | Zbl

[10] P. D. Cha, “Free vibration of a uniform beam with multiple elastically mounted two-degree-of-freedom systems”, Journal of Sound and Vibration, 307:1–2 (2007), 386–392 | DOI

[11] J.-J. Wu, A. R. Whittaker, “The natural frequencies and mode shapes of a uniform cantilever beam with multiple two-DOF spring-mass systems”, Journal of Sound and Vibration, 227:2 (1999), 361–381 | DOI

[12] J.-S. Wu, H.-M. Chou, “A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of spring masses”, Journal of Sound and Vibration, 220:3 (1999), 451–468 | DOI

[13] J.-S. Wu, “Alternative approach for free vibration of beams carrying a number of two-degree of freedom spring-mass systems”, Journal of Structural Engineering – ASCE, 128:12 (2002), 1604–1616 | DOI

[14] S. Naguleswaran, “Transverse vibration of an Euler–Bernoulli uniform beam carrying several particles”, International Journal of Mechanical Sciences, 44:12 (2002), 2463–2478 | DOI | Zbl

[15] S. Naguleswaran, “Transverse vibration of an Euler–Bernoulli uniform beam on up a five resilient supports including end”, Journal of Sound and Vibration, 261:2 (2003), 372–384 | DOI

[16] H. Su, J. R. Banerjee, “Exact natural frequencies of structures consisting of two part beam-mass systems”, Structural Engineering and Mechanics, 19:5 (2005), 551–566 | DOI

[17] H.-Y. Lin, Y.-C. Tsai, “Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems”, Journal of Sound and Vibration, 302:3 (2007), 442–456 | DOI

[18] J.-S. Wu, D.-W. Chen, “Dynamic analysis of uniform cantilever Beam carrying a number of elastically mounted point masses with dampers”, Journal of Sound and Vibration, 229:3 (2000), 549–578 | DOI

[19] V. S. Vladimirov, Generalized solutions in mathematical physics, Nauka, M., 1976 (in Russian) | MR