On an identity for the iterated weighted spherical mean and its applications
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 849-860.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spherical means are well-known useful tool in the theory of partial differential equations with applications to solving hyperbolic and ultrahyperbolic equations and problems of integral geometry, tomography and Radon transforms. We generalize iterated spherical means to weighted ones based on generalized translation operators and consider applications to $B$-hyperbolic equations and transmission tomography problems.
Keywords: spherical means, weighted means, Àsgeirsson theorem, iterated means, $B$-hyperbolic equation, integral geometry, tomography.
@article{SEMR_2016_13_a83,
     author = {S. M. Sitnik and E. L. Shishkina},
     title = {On an identity for the iterated weighted spherical mean and its applications},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {849--860},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/}
}
TY  - JOUR
AU  - S. M. Sitnik
AU  - E. L. Shishkina
TI  - On an identity for the iterated weighted spherical mean and its applications
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 849
EP  - 860
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/
LA  - ru
ID  - SEMR_2016_13_a83
ER  - 
%0 Journal Article
%A S. M. Sitnik
%A E. L. Shishkina
%T On an identity for the iterated weighted spherical mean and its applications
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 849-860
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/
%G ru
%F SEMR_2016_13_a83
S. M. Sitnik; E. L. Shishkina. On an identity for the iterated weighted spherical mean and its applications. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 849-860. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/

[1] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Reprint, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | MR | Zbl

[2] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, 2nd ed., Springer-Verlag, New York, 1990 | Zbl

[3] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. 2, Wiley-Interscience, 1962 | Zbl

[4] F. Natterer, The Mathematics of Computerized Tomography, SIAM, 1986 | MR | Zbl

[5] Y. Dong, T. Görner, S. Kunis, “An algorithm for total variation regularized photoacoustic imaging”, Adv. Comput. Math., 41:2 (2015), 423–438 | DOI | MR | Zbl

[6] S. Helgason, Groups and Geometric Analysis, Amer. Math. Soc., Providence, RI, 2000 ; Academic Press, San Diego, CA, 1984 | MR | Zbl | Zbl

[7] S. M. Sitnik, “Transmutations and Applications: a survey”, Researches on modern analysis and mathematical modelling, Vladikavkaz, 2008, 226–293 pp.; 2012, 141 pp., arXiv: 1012.3741

[8] V. V. Katrakhov, S. M. Sitnik, “Composition method for constructing $B$-elliptic, $B$-hyperbolic, and $B$-parabolic transformation operators”, Russ. Acad. Sci., Dokl., Math., 50:1 (1995), 70–77 | MR | Zbl

[9] S. Deans, The Radon Transform and Some of Its Applications, revised edition, Krieger Publishing Co., Malabar, FL, 1993 | MR | Zbl

[10] S. M. Sitnik, “Buschman–Erdelyi transmutations, classification and applications”, Analytic methods of analysis and differential equations, AMADE 2012, eds. M. V. Dubatovskaya, S. V. Rogosin, Cambridge Scientific Publishers, 2013, 171–201 | MR

[11] S. M. Sitnik, “Factorization and estimates of the norms of Buschman–Erdelyi operators in weighted Lebesgue spaces”, Soviet Mathematics Doklades, 44:2 (1992), 641–646 | MR

[12] B. Rubin, “Radon transforms and Gegenbauer–Chebyshev integrals, I”, Anal. Math. Phys., 2016

[13] B. Rubin, “On the Funk–Radon–Helgason inversion method in integral geometry”, Contemp. Math., 599, 2013, 175–198 | DOI | MR | Zbl

[14] J. Delsartes, “Une extension nouvelle de la theorie de fonctions presque-periodiques de Bohr”, Acta Mathematica, 69 (1939), 257–317

[15] B. M. Levitan, “Expansion in Fourier Series and Integrals with Bessel Functions”, Uspekhi Mat. Nauk, 6:2(42) (1951), 102–143 | MR | Zbl

[16] L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “On Kipriyanov problem for a singular ultrahyperbolic equation”, Differ. Equ., 50:4 (2014), 513–525 | DOI | MR | Zbl

[17] L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “Formulas for the Solution of the Cauchy Problem for a Singular Wave Equation with Bessel Time Operator”, Doklady Mathematics, 90:3 (2014), 737–742 | DOI | MR | Zbl

[18] L. Àsgeirsson, “Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2. Ordnung mit Konstanten Koeffizienten”, Math. Ann., 113 (1936), 321–346 | DOI | MR

[19] D. N. Fox, “The solution and Huygens' principle for a singular Cauchy problem”, J. Math. Mech., 8 (1959), 197–219 | MR | Zbl

[20] P. Kuchment, The Radon Transform and Medical Imaging, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2014 | MR | Zbl

[21] I. A. Kipriyanov, Singular Elliptic Boundary Value Problems, Nauka, M., 1997 | MR | Zbl

[22] L. N. Lyakhov, B-hypersingular integrals and its applications to Kipriyanov's functional classes and to integral equations with B-potential kernels, LGPU, Lipetsk, 2007

[23] I. A. Kipriyanov, Yu. V. Zasorin, “On fundamental solution of wave equation with many singularities and Huygens principle”, Differ. Equ., 28:3 (1992), 452–462 | MR | Zbl

[24] L. N. Lyakhov, “$RK_\gamma$-transform with $\gamma\in(0,2]$ of weighted spherical means of functions. Àsgeirsson's equality”, Dokl. acad., 439:5 (2011), 589–592 | MR | Zbl

[25] E. L. Shishkina, “Equality for iterated weighted spherical means generated by the generalized translation”, Some problems of mathematics and mathematical education, Conference proceedings, LXVI, St. Petersburg, 2013, 143–145 | MR

[26] I. A. Kipriyanov, L. A. Ivanov, “On obtaining of fundamental solutions for homogeneous equations with singularities with respect to some variables”, Tr. Semin. S. L. Soboleva, 1, Acad. nauk SSSR. Siberian branch, 1983, 55–77 | MR | Zbl

[27] W. E. Higgins, D. C. Munson, “A Hankel transform approach to tomographic image reconstruction”, IEEE Trans. Med. Im., 7 (1988), 59–72 | DOI

[28] M. Halliwell, P. N. Wells, Acoustical Imaging, Springer, 2001

[29] G. Beylkin, “The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering”, Journal of Mathematical Physics, 24:6 (1983), 1399–1400 | DOI | MR

[30] P. P. Ewald, “Introduction to the dynamical theory of X-ray diffraction”, Acta Crystallographica Section, A25:103 (1969), 103–108 | DOI