Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a83, author = {S. M. Sitnik and E. L. Shishkina}, title = {On an identity for the iterated weighted spherical mean and its applications}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {849--860}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/} }
TY - JOUR AU - S. M. Sitnik AU - E. L. Shishkina TI - On an identity for the iterated weighted spherical mean and its applications JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 849 EP - 860 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/ LA - ru ID - SEMR_2016_13_a83 ER -
S. M. Sitnik; E. L. Shishkina. On an identity for the iterated weighted spherical mean and its applications. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 849-860. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a83/
[1] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Reprint, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | MR | Zbl
[2] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, 2nd ed., Springer-Verlag, New York, 1990 | Zbl
[3] R. Courant, D. Hilbert, Methods of Mathematical Physics, v. 2, Wiley-Interscience, 1962 | Zbl
[4] F. Natterer, The Mathematics of Computerized Tomography, SIAM, 1986 | MR | Zbl
[5] Y. Dong, T. Görner, S. Kunis, “An algorithm for total variation regularized photoacoustic imaging”, Adv. Comput. Math., 41:2 (2015), 423–438 | DOI | MR | Zbl
[6] S. Helgason, Groups and Geometric Analysis, Amer. Math. Soc., Providence, RI, 2000 ; Academic Press, San Diego, CA, 1984 | MR | Zbl | Zbl
[7] S. M. Sitnik, “Transmutations and Applications: a survey”, Researches on modern analysis and mathematical modelling, Vladikavkaz, 2008, 226–293 pp.; 2012, 141 pp., arXiv: 1012.3741
[8] V. V. Katrakhov, S. M. Sitnik, “Composition method for constructing $B$-elliptic, $B$-hyperbolic, and $B$-parabolic transformation operators”, Russ. Acad. Sci., Dokl., Math., 50:1 (1995), 70–77 | MR | Zbl
[9] S. Deans, The Radon Transform and Some of Its Applications, revised edition, Krieger Publishing Co., Malabar, FL, 1993 | MR | Zbl
[10] S. M. Sitnik, “Buschman–Erdelyi transmutations, classification and applications”, Analytic methods of analysis and differential equations, AMADE 2012, eds. M. V. Dubatovskaya, S. V. Rogosin, Cambridge Scientific Publishers, 2013, 171–201 | MR
[11] S. M. Sitnik, “Factorization and estimates of the norms of Buschman–Erdelyi operators in weighted Lebesgue spaces”, Soviet Mathematics Doklades, 44:2 (1992), 641–646 | MR
[12] B. Rubin, “Radon transforms and Gegenbauer–Chebyshev integrals, I”, Anal. Math. Phys., 2016
[13] B. Rubin, “On the Funk–Radon–Helgason inversion method in integral geometry”, Contemp. Math., 599, 2013, 175–198 | DOI | MR | Zbl
[14] J. Delsartes, “Une extension nouvelle de la theorie de fonctions presque-periodiques de Bohr”, Acta Mathematica, 69 (1939), 257–317
[15] B. M. Levitan, “Expansion in Fourier Series and Integrals with Bessel Functions”, Uspekhi Mat. Nauk, 6:2(42) (1951), 102–143 | MR | Zbl
[16] L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “On Kipriyanov problem for a singular ultrahyperbolic equation”, Differ. Equ., 50:4 (2014), 513–525 | DOI | MR | Zbl
[17] L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “Formulas for the Solution of the Cauchy Problem for a Singular Wave Equation with Bessel Time Operator”, Doklady Mathematics, 90:3 (2014), 737–742 | DOI | MR | Zbl
[18] L. Àsgeirsson, “Über eine Mittelwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichungen 2. Ordnung mit Konstanten Koeffizienten”, Math. Ann., 113 (1936), 321–346 | DOI | MR
[19] D. N. Fox, “The solution and Huygens' principle for a singular Cauchy problem”, J. Math. Mech., 8 (1959), 197–219 | MR | Zbl
[20] P. Kuchment, The Radon Transform and Medical Imaging, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2014 | MR | Zbl
[21] I. A. Kipriyanov, Singular Elliptic Boundary Value Problems, Nauka, M., 1997 | MR | Zbl
[22] L. N. Lyakhov, B-hypersingular integrals and its applications to Kipriyanov's functional classes and to integral equations with B-potential kernels, LGPU, Lipetsk, 2007
[23] I. A. Kipriyanov, Yu. V. Zasorin, “On fundamental solution of wave equation with many singularities and Huygens principle”, Differ. Equ., 28:3 (1992), 452–462 | MR | Zbl
[24] L. N. Lyakhov, “$RK_\gamma$-transform with $\gamma\in(0,2]$ of weighted spherical means of functions. Àsgeirsson's equality”, Dokl. acad., 439:5 (2011), 589–592 | MR | Zbl
[25] E. L. Shishkina, “Equality for iterated weighted spherical means generated by the generalized translation”, Some problems of mathematics and mathematical education, Conference proceedings, LXVI, St. Petersburg, 2013, 143–145 | MR
[26] I. A. Kipriyanov, L. A. Ivanov, “On obtaining of fundamental solutions for homogeneous equations with singularities with respect to some variables”, Tr. Semin. S. L. Soboleva, 1, Acad. nauk SSSR. Siberian branch, 1983, 55–77 | MR | Zbl
[27] W. E. Higgins, D. C. Munson, “A Hankel transform approach to tomographic image reconstruction”, IEEE Trans. Med. Im., 7 (1988), 59–72 | DOI
[28] M. Halliwell, P. N. Wells, Acoustical Imaging, Springer, 2001
[29] G. Beylkin, “The fundamental identity for iterated spherical means and the inversion formula for diffraction tomography and inverse scattering”, Journal of Mathematical Physics, 24:6 (1983), 1399–1400 | DOI | MR
[30] P. P. Ewald, “Introduction to the dynamical theory of X-ray diffraction”, Acta Crystallographica Section, A25:103 (1969), 103–108 | DOI