Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a80, author = {R. Boukoucha}, title = {On the dynamics of a class of {Kolmogorov} systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {734--739}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/} }
R. Boukoucha. On the dynamics of a class of Kolmogorov systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 734-739. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/
[1] A. Bendjeddou, R. Boukoucha, “Explicit non-algebraic limit cycles of a class of polynomial systems”, FJAM, 91:2 (2015), 133–142 | DOI | MR | Zbl
[2] A. Bendjeddou, R. Cheurfa, “Cubic and quartic planar differential system with exact algebraic limit cycles”, Electronic Journal of Differential Equations, 2011 | MR | Zbl
[3] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the differential systems with homogenous nonlinearity and a star node”, J. Differential Equations, 254 (2013), 3530–3537 | DOI | MR | Zbl
[4] R. Boukoucha, A. Bendjeddou, “On the dynamics of a class of rational Kolmogorov systems”, Journal of Nonlinear Mathematical Physics, 23:1 (2016), 21–27 | DOI | MR
[5] F. H. Busse, “Transition to turbulence via the statistical limit cycle route”, Synergetics, Springer-Verlag, Berlin, 1978
[6] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40 (2007), 6329–6348 | DOI | MR | Zbl
[7] J. Chavarriga, I. A. Garc'ia, “Existence of limit cycles for real quadratic differential systems with an invariant cubic”, Pacific Journal of Mathematics, 223:2 (2006), 201–218 | DOI | MR | Zbl
[8] A. D. I. T. Khalil, “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR | Zbl
[9] F. Dumortier, J. Llibre, J. Artés, Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | MR | Zbl
[10] P. Gao, “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl
[11] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl
[12] X. Huang, “Limit in a Kolmogorov-type Moel”, Internat. J. Math. and Math Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl
[13] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoreal Physics, Gordon and Breach, New York, 1975
[14] C. Li, J. Llibre, “The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system”, Nonlinearity, 22 (2009), 2971–2979 | DOI | MR | Zbl
[15] J. Llibre, T. Salhi, “On the dynamics of class of Kolmogorov systems”, J. Appl. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl
[16] J. Llibre, C. Valls, “Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62 (2011), 761–777 | DOI | MR | Zbl
[17] N. G. Llyod, J. M. Pearson, E. Saez, I. Szanto, “Limit cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR | Zbl
[18] R. M. May, Stability and complexity in Model Ecosystems, Princeton, New Jersey, 1974