On the dynamics of a class of Kolmogorov systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 734-739

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( P\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \\ y^{\prime }=y\left( Q\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \end{array} \right. \end{equation*} where $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $ S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a$ respectively and $\lambda \in \mathbb{Q} ^{\ast }$. Concrete example exhibiting the applicability of our result is introduced.
Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
@article{SEMR_2016_13_a80,
     author = {R. Boukoucha},
     title = {On the dynamics of a class of {Kolmogorov} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {734--739},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - On the dynamics of a class of Kolmogorov systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 734
EP  - 739
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/
LA  - en
ID  - SEMR_2016_13_a80
ER  - 
%0 Journal Article
%A R. Boukoucha
%T On the dynamics of a class of Kolmogorov systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 734-739
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/
%G en
%F SEMR_2016_13_a80
R. Boukoucha. On the dynamics of a class of Kolmogorov systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 734-739. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/