On the dynamics of a class of Kolmogorov systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 734-739.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form \begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( P\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \\ y^{\prime }=y\left( Q\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \end{array} \right. \end{equation*} where $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $ S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a$ respectively and $\lambda \in \mathbb{Q} ^{\ast }$. Concrete example exhibiting the applicability of our result is introduced.
Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
@article{SEMR_2016_13_a80,
     author = {R. Boukoucha},
     title = {On the dynamics of a class of {Kolmogorov} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {734--739},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - On the dynamics of a class of Kolmogorov systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 734
EP  - 739
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/
LA  - en
ID  - SEMR_2016_13_a80
ER  - 
%0 Journal Article
%A R. Boukoucha
%T On the dynamics of a class of Kolmogorov systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 734-739
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/
%G en
%F SEMR_2016_13_a80
R. Boukoucha. On the dynamics of a class of Kolmogorov systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 734-739. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a80/

[1] A. Bendjeddou, R. Boukoucha, “Explicit non-algebraic limit cycles of a class of polynomial systems”, FJAM, 91:2 (2015), 133–142 | DOI | MR | Zbl

[2] A. Bendjeddou, R. Cheurfa, “Cubic and quartic planar differential system with exact algebraic limit cycles”, Electronic Journal of Differential Equations, 2011 | MR | Zbl

[3] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the differential systems with homogenous nonlinearity and a star node”, J. Differential Equations, 254 (2013), 3530–3537 | DOI | MR | Zbl

[4] R. Boukoucha, A. Bendjeddou, “On the dynamics of a class of rational Kolmogorov systems”, Journal of Nonlinear Mathematical Physics, 23:1 (2016), 21–27 | DOI | MR

[5] F. H. Busse, “Transition to turbulence via the statistical limit cycle route”, Synergetics, Springer-Verlag, Berlin, 1978

[6] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40 (2007), 6329–6348 | DOI | MR | Zbl

[7] J. Chavarriga, I. A. Garc'ia, “Existence of limit cycles for real quadratic differential systems with an invariant cubic”, Pacific Journal of Mathematics, 223:2 (2006), 201–218 | DOI | MR | Zbl

[8] A. D. I. T. Khalil, “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR | Zbl

[9] F. Dumortier, J. Llibre, J. Artés, Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | MR | Zbl

[10] P. Gao, “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl

[11] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl

[12] X. Huang, “Limit in a Kolmogorov-type Moel”, Internat. J. Math. and Math Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl

[13] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoreal Physics, Gordon and Breach, New York, 1975

[14] C. Li, J. Llibre, “The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system”, Nonlinearity, 22 (2009), 2971–2979 | DOI | MR | Zbl

[15] J. Llibre, T. Salhi, “On the dynamics of class of Kolmogorov systems”, J. Appl. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl

[16] J. Llibre, C. Valls, “Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62 (2011), 761–777 | DOI | MR | Zbl

[17] N. G. Llyod, J. M. Pearson, E. Saez, I. Szanto, “Limit cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR | Zbl

[18] R. M. May, Stability and complexity in Model Ecosystems, Princeton, New Jersey, 1974