The multidimensional problem of determining the density function for the system of viscoelasticity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 635-644.

Voir la notice de l'article provenant de la source Math-Net.Ru

The integro-differential system of viscoelasticity equations is considered. The problem of determining the function of density $\rho(x_2,x_3)$ is investigated. For its determination an additional condition relative to the Fourier transform of the first component of the displacements vector for $x_3 = 0$ is given. The theorems of the local unique solvability of the inverse problem is proved in the special class of functions. The stability estimate of solving the inverse problem is obtained.
Keywords: inverse problem, stability, delta function, density.
Mots-clés : Lame's coefficients
@article{SEMR_2016_13_a78,
     author = {Zh. D. Totieva},
     title = {The multidimensional problem of determining the density function for the system of viscoelasticity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {635--644},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a78/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - The multidimensional problem of determining the density function for the system of viscoelasticity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 635
EP  - 644
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a78/
LA  - ru
ID  - SEMR_2016_13_a78
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T The multidimensional problem of determining the density function for the system of viscoelasticity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 635-644
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a78/
%G ru
%F SEMR_2016_13_a78
Zh. D. Totieva. The multidimensional problem of determining the density function for the system of viscoelasticity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 635-644. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a78/

[1] S. I. Kabanikhin, Inverse and Ill-posed problems, Siberian science publishers, N., 2009 (in Russian)

[2] M. M. Lavrentiev, V. G. Romanov, S. P. Shishatskii, Ill-posed problems of mathematical physics and analysis, Nauka, M., 1980 (in Russian) | MR

[3] A. S. Alekseev, “Some inverse problems of the theory of wave propagation”, Proceedings of the Academy of Sciences of the USSR, 11 (1962), 1514–1531 | MR

[4] A. S. Alekseev, “The inverse dynamic seismic problem”, Some methods and algorithms of interpretation of geophysical data, M., 1967, 9–84 (in Russian)

[5] A. S. Blagoveshchensky, “On the inverse problem of the theory of propagation of seismic waves”, Problems of mathematical physics, 1, L., 1966, 68–81 (in Russian)

[6] Romanov V. G., Inverse problems of mathematical physics, Nauka, M., 1984 (in Russian) | MR | Zbl

[7] Romanov V. G., Volkova E. A., “Inverse dynamic problem for anisotropic elastic medium”, Sov. Math. Dokl., 267:4 (1982), 780–783 (in Russian) | MR | Zbl

[8] T. V. Melnikova, V. G. Yakhno, One-dimensional inverse dynamic problem of isotropic elasticity for a spherically symmetric Earth model, Preprint, USSR Academy of Sciences, Sib. otd., Novosibirsk, 1985 (in Russian) | MR

[9] V. G. Yakhno, Inverse problem for differential equations of elasticity, Nauka, Novosibirsk, 1988 (in Russian)

[10] A. Lorenzi, E. Sinestrari, “An inverse problem in the theory of materials with memory I”, Nonlinear Anal. TMA, 12 (1988), 1217–1335 | DOI | MR

[11] A. Lorenzi, “An inverse problem in the theory of materials with memory II”, Semigroup Theory and Applications, Series on Pure and Applied Mathematics, 116, 1989, 261–290 | MR | Zbl

[12] D. K. Durdiev, “Inverse problem for three-dimensional wave equation in a medium with memory”, Mathematical analysis analysis and discrete mathematics, Novosibirsk University, Novosibirsk, 1989, 19–27 (in Russian) | MR

[13] M. Grasselli, S. Kabanikhin, A. Lorenzi, “An inverse hyperbolic integro-differential problem arising in Geophysics II”, Nonlinear Anal. T.M.A., 15 (1990), 283–298 | DOI | MR | Zbl

[14] M. Grasselli, “An identification problem for an abstract linear hyperbolic integro-differential equation with applications”, J. Math. Anal. Appl., 171 (1992), 27–60 | DOI | MR | Zbl

[15] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105–138 | MR | Zbl

[16] A. L. Bukhgeim, “Inverse problems of memory reconstruction”, J. of Inverse and Ill-Posed Problems, 1:3 (1993), 193–206 | DOI | MR

[17] A. Lorenzi, J. Sh. Ulekova, V. G. Yakhno, “An inverse problem in viscoelasticity”, J. Inv. Ill-posed Prob., 2 (1994), 131–165 | MR

[18] D. K. Durdiev, “Multidimensional inverse problem for the equation with memory”, Siberian Mathematical Journal, 35:3 (1994), 574–582 (in Russian) | DOI | MR | Zbl

[19] A. L. Bukhgeim, G. V. Dyatlov, “Uniqueness in one inverse problem of determining the memory”, Siberian Mathematical Journal, 37:3 (1996), 526–533 (in Russian) | DOI | MR | Zbl

[20] A. Lorenzi, V. I. Priimenko, “Identification problems related to electro-magneto-elastic interactions”, J. Inverse Ill-Posed Probl., 4:2 (1996), 115–143 | DOI | MR | Zbl

[21] A. L. Bukhgeim, G. V. Dyatlov, “Inverse problems for equations with memory”, SIAM J. Math. Fool., 1:2 (1998), 1–17 | MR

[22] J. Janno, L. Von Wolfersdorf, “An inverse problem for identification of a time- and space-dependent memory kernel in viscoelasticity”, Inverse Problems, 17 (2001), 13–24 | DOI | MR | Zbl

[23] A. Lorenzi, F. Messina, V. G. Romanov, “Recovering a Lame kernel in a viscoelastic system”, Applicable Analysis, 86:11 (2007), 1375–1395 | DOI | MR | Zbl

[24] D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Journal of Mathematical Physics, Analysis, Geometry, 3:4 (2007), 411–423 | MR | Zbl

[25] D. K. Durdiev, “Inverse problem for determining two coefficients in a single integro-differential wave equation”, Siberian Journal of Industrial Mathematics, 12:3 (2009), 28–40 (in Russian) | MR | Zbl

[26] V. G. Romanov, M. Yamamoto, “Recovering a Lame kernel in a viscoelastic equation by a single boundary measurement”, Applicable Analysis, 89:3 (2010), 377–390 | DOI | MR | Zbl

[27] V. G. Romanov, “Two-dimensional inverse problem for the equation of viscoelasticity”, Siberian Mathematical Journal, 53:6 (2012), 1401–1412 (in Russian) | DOI | MR | Zbl

[28] V. G. Romanov, “On the determination of the coefficients in the equations of viscoelasticity”, Siberian Mathematical Journal, 55:3 (2014), 617–626 (in Russian) | DOI | MR | Zbl

[29] D. K. Durdiev, Zh. D. Toteva, “the Problem of determining a one-dimensional kernel of viscoelasticity equation”, Siberian Journal of Industrial Mathematics, 16:2 (2013), 72–82 (in Russian) | MR | Zbl

[30] D. Q. Durdiev, Zh. D. Totieva, “The Problem of determining a multidimensional kernel of viscoelasticity equation”, Vladikavkaz Mathematical Journal, 17:4 (2015), 18–43 (in Russian)

[31] Zh. D. Tuaeva, “The multidimensional mathematical model of seismic with memory”, Mathematical forum. Studies of dif. equations and math. modeling, 1:2 (2008), 297–306 (in Russian)

[32] Zh. D. Totieva, “On the fundamental solution of the Cauchy problem for a hyperbolic operator”, Vladikavkaz Mathematical Journal, 14:2 (2012), 45–49 (in Russian) | MR | Zbl