Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 541-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial boundary value problem which describes unsteady polytropic motions of a multicomponent mixture of viscous compressible fluids in a bounded three-dimensional domain. The material derivative operator is supposed to be common for all components and defined by the average velocity of the mixture, however separate velocities of the components are preserved in other terms. The pressure is supposed to be common and depending on the total density via the polytropic equation of state. Except the above mentioned, we do not make any simplifications (including the structure of the viscosity matrix), i. e. all summands are preserved in the equations which are a natural generalization of the Navier–Stokes model which describes motions of one-component media. We proved the existence of weak solutions to the initial boundary value problem.
Keywords: existence theorem, unsteady boundary value problem, homogeneous mixture with multiple velocities, polytropic equation of state
Mots-clés : viscous compressible fluid, effective viscous flux.
@article{SEMR_2016_13_a76,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {541--583},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a76/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 541
EP  - 583
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a76/
LA  - ru
ID  - SEMR_2016_13_a76
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 541-583
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a76/
%G ru
%F SEMR_2016_13_a76
A. E. Mamontov; D. A. Prokudin. Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 541-583. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a76/

[1] M. E. Bogovski, “On solutions of certain problems of vector analysis involving the operators div and grad”, Tr. Semin. im. S. L. Soboleva, 1, Institute of Mathematics, Siberian Branch of USSR Acad. Sci., Novosibirsk, 1980, 5–40 (in Russian) | MR

[2] R. Coifman, Y. Meyer, “On commutators of singular integrals and bilinear singular integrals”, Transactions of the American Mathematical Society, 212 (1975), 315–331 | DOI | MR | Zbl

[3] V. N. Dorovsky, Yu. V. Perepechko, “Theory of the partial melting”, Sov. Geology and Geophysics, 30:9 (1989), 56–64 (in Russian)

[4] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, 2009 | MR | Zbl

[5] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and Its Applications, 26, Oxford University Press, Oxford, 2003 | MR

[6] E. Feireisl, A. Novotný, H. Petzeltová, “On the existence of globally defined weak solutions to the Navier–Stokes equations”, Journal of Mathematical Fluid Mechanics, 3 (2001), 358–392 | DOI | MR | Zbl

[7] P.-L. Lions, Mathematical topics in fluid mechanics, v. 2, Compressible Models, Oxford University Press, New York, 1998 | MR | Zbl

[8] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izvestiya: Mathematics, 78:3 (2014), 554–579 | DOI | MR | Zbl

[9] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR | Zbl

[10] E. A. Nagnibeda, E. V. Kustova, Non-Equilibrium Reacting Gas Flow, Springer, Berlin, 2009 | MR | Zbl

[11] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, N.Y., 1990

[12] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[13] P. Plotnikov, J. Sokolowski, Compressible Navier–Stokes equations. Theory and shape optimization, IMPAN Monografie Matematyczne (N. S.), 73, Birkhäuser, Basel, 2012 | MR | Zbl

[14] D. A. Prokudin, M. V. Krayushkina, “Solvability of steady boundary value problem for a model system of equations of barotropic motion of a mixture of viscous compressible fluids”, Journal of Applied and Industrial Mathematics, 2016 (to appear)

[15] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl

[16] L. Tartar, “Compensated compactness and applications to partial differential equations”, Nonlinear Analysis and Mechanics, Heriot–Watt Symposium IV, Pitman Research Notes in Mathematics, 39, ed. R. Knops, Pitman, Boston, 1979, 136–212 | MR | Zbl

[17] V. M. Zhdanov, Transport Processes in Multicomponent Plasma, Taylor and Francis, London–New York, 2002