Domain decomposition method for a membrane with a delaminated thin rigid inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 395-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the numerical solution of an equilibrium problem for an elastic membrane with a thin rigid inclusion. The thin inclusion is supposed to delaminate, therefore a crack between the inclusion and the membrane is considered. The boundary conditions for nonpenetration of the crack faces are fulfilled. We provide the relaxation of the problem and propose an iterative method for the numerical solution of the approximated problem. The method is based on a domain decomposition and the Uzawa algorithm for finding a saddle point of the Lagrangian. Examples of the numerical solution of the initial problem are presented.
Keywords: crack, thin rigid inclusion, nonpenetration condition, variational inequality, Uzawa algorithm.
Mots-clés : domain decomposition method
@article{SEMR_2016_13_a73,
     author = {E. M. Rudoy and V. V. Shcherbakov},
     title = {Domain decomposition method for a membrane with a delaminated thin rigid inclusion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {395--410},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/}
}
TY  - JOUR
AU  - E. M. Rudoy
AU  - V. V. Shcherbakov
TI  - Domain decomposition method for a membrane with a delaminated thin rigid inclusion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 395
EP  - 410
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/
LA  - en
ID  - SEMR_2016_13_a73
ER  - 
%0 Journal Article
%A E. M. Rudoy
%A V. V. Shcherbakov
%T Domain decomposition method for a membrane with a delaminated thin rigid inclusion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 395-410
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/
%G en
%F SEMR_2016_13_a73
E. M. Rudoy; V. V. Shcherbakov. Domain decomposition method for a membrane with a delaminated thin rigid inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 395-410. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/

[1] G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Oxford University Press, 2007 | MR | Zbl

[2] G. P. Astrakhantsev, “Domain decomposition method for the problem of bending heterogeneous plate”, Comput. Math. Math. Phys., 38 (1998), 1686–1694 | MR | Zbl

[3] G. Bayada, J. Sabil, T. Sassi, “A Neumann–Neumann domain decomposition algorithm for the Signorini problem”, Appl. Math. Lett., 17 (2004), 1153–1159 | DOI | MR | Zbl

[4] G. Bayada, J. Sabil, T. Sassi, “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law”, ESAIM Math. Model. Num., 42 (2008), 243–262 | DOI | MR | Zbl

[5] D. Bigoni, F. Dal Corso, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II: Implications on shear band nucleation, growth and energy release rate”, J. Mech. Phys. Solids., 56 (2008), 839–857 | DOI | MR | Zbl

[6] R. A. Chaudhuri, “On three-dimensional singular stress/residual stress fields at the front of a crack/anticrack in an orthotropic/orthorhombic plate under anti-plane shear loading”, Comp. Struct., 92 (2010), 1977–1984 | DOI

[7] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, 1979 | Zbl

[8] F. Dal Corso, D. Bigoni, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I: Full-field solution and asymptotics”, J. Mech. Phys. Solids, 56 (2008), 815–838 | DOI | MR | Zbl

[9] J. Daněk, I. Hlaváček, J. Nedomac, “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity”, Math. Comp. Sim., 68 (2005), 271–300 | DOI | MR | Zbl

[10] Z. Dostál, F. A. M. Gomes Neto, S. A. Santos, “Solution of contact problems by FETI domain decomposition with natural coarse space projections”, Comput. Methods Appl. Mech. Engrg., 190 (2000), 1611–1627 | DOI | Zbl

[11] Z. Dostál, D. Horák, D. Stefanica, “A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface”, J. of Comp. Appl. Math., 231 (2009), 577–591 | DOI | MR | Zbl

[12] I. Ekeland I., R. Temam, Convex Analysis and Variational Problems, SIAM, 1999 | MR | Zbl

[13] G. Geymonat, F. Krasucki, D. Marini, M. Vidrascu, “A domain decomposition method for a bonded structure”, Math. Models Meth. Appl. Sci., 8 (1998), 1387–1402 | DOI | MR | Zbl

[14] R. Glowinski, J.-L. Lions, R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, 1981 | MR | Zbl

[15] P. Grisvard, Singularities in Boundary Value Problems, Springer, 1991 | MR

[16] J. Haslinger, R. Kučera, J. Riton, T. Sassi, “A domain decomposition method for two-body contact problems with Tresca friction”, Adv. Comput. Mathematics, 40 (2014), 65–90 | DOI | MR | Zbl

[17] J. Haslinger, R. Kučera, T. Sassi, “A domain decomposition algorithm for contact problems: analysis and implementation”, Math. Model. Nat. Phenom., 4 (2009), 123–146 | DOI | MR | Zbl

[18] K. Ito, K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, 2008 | MR | Zbl

[19] G. Kerr, G. Melrose, J. Tweed, “Antiplane shear of a strip containing a staggered array of rigid line inclusions”, Math. Comput. Model, 25 (1997), 11–18 | DOI | MR | Zbl

[20] A. M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A/Solids, 29 (2010), 69–75 | DOI | MR

[21] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, 2000

[22] A. M. Khludnev, V. A. Kovtunenko, A. Tani, “On the topological derivative due to kink of a crack with non-penetration. Anti-plane model”, J. Math. Pures Appl., 94 (2010), 571–596 | DOI | MR | Zbl

[23] A. M. Khludnev, V. A. Kozlov, “Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions”, Z. Angew. Math. Phys., 59 (2008), 264–280 | DOI | MR | Zbl

[24] A. M. Khludnev, G. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91 (2011), 125–137 | DOI | MR | Zbl

[25] A. M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Methods Appl. Sci., 33 (2010), 1955–1967 | MR | Zbl

[26] A. M. Khludnev, G. Leugering, M. Specovius-Neugebauer, “Optimal control of inclusion and crack shapes in elastic bodies”, J. Optim. Theory Appl., 155 (2012), 54–78 | DOI | MR | Zbl

[27] A. M. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64 (2013), 179–191 | DOI | MR | Zbl

[28] A. M. Khludnev, K. Ohtsuka, J. Sokolowski, “On derivative of energy functional for elastic bodies with a crack and unilateral conditions”, Quart. Appl. Math., 60 (2002), 99–109 | MR | Zbl

[29] A. M. Khludnev, A. Tani, “Overlapping domain problems in the crack theory with possible contact between crack faces”, Quart. Appl. Math., 66 (2008), 423–435 | DOI | MR | Zbl

[30] J. Koko, “Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows”, J. Sci. Comput., 26 (2006), 195–215 | DOI | MR | Zbl

[31] J. Koko, “Uzawa block relaxation domain decomposition method for the two-body contact problem with Tresca friction”, Comput. Methods Appl. Mech. Engrg., 198 (2008), 420–431 | DOI | MR | Zbl

[32] V. A. Kovtunenko, “Sensitivity of cracks in 2D-Lamé problem via material derivatives”, Z. angew. Math. Phys., 52 (2001), 1071–1087 | DOI | MR | Zbl

[33] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, 85, AMS, 2001 | MR | Zbl

[34] Yu. M. Laevsky, A. M. Matsokin, “Decomposition methods for the solution to elliptic and parabolic boundary value problems”, Sib. Zh. Vychisl. Mat., 2 (1999), 361–372

[35] E. Laitinen, A. V. Lapin, J. Pieskä, “Splitting iterative methods and parallel solution of variational inequalities”, Lobachevskii J. Math., 8 (2001), 167–184 | MR | Zbl

[36] N. P. Lazarev, E. M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl

[37] G. Leugering, A. M. Khludnev, “On the equilibrium of elastic bodies containing thin rigid inclusions”, Dokl. Phys., 55 (2010), 18–22 | DOI | Zbl

[38] M. D. Gunzburger, H. K. Lee, “An optimization-based domain decomposition method for the Navier–Stokes equations”, SIAM J. Numer. Anal., 37 (2000), 1455–1480 | DOI | MR | Zbl

[39] M. S. Nerantzakia, C. B. Kandilas, “Geometrically nonlinear analysis of elastic membranes with embedded rigid inclusions”, Eng. Anal. Bound. Elem., 31 (2007), 216–225 | DOI

[40] P. I. Plotnikov, E. M. Rudoy, “Shape sensitivity analysis of energy integrals for bodies with rigid inclusions and cracks”, Dokl. Math., 84 (2011), 681–684 | DOI | MR | Zbl

[41] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999 | MR | Zbl

[42] E. M. Rudoi, “Invariant integrals in a planar problem of elasticity theory for bodies with rigid inclusions and cracks”, J. Appl. Ind. Math., 6 (2012), 371–380 | DOI | MR | Zbl

[43] E. M. Rudoy, “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186 (2012), 511–529 | DOI | MR

[44] E. M. Rudoy, “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack”, J. Appl. Mech. Techn. Phys., 52 (2011), 252–263 | DOI | MR

[45] E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges”, Comput. Math. Math. Phys., 55 (2015), 305–316 | DOI | MR | Zbl

[46] E. M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, ZAMP. Z. Angew. Math. Phys., 66 (2015), 1923–1937 | DOI | MR | Zbl

[47] E. M. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Methods Appl. Sci., 2015 | DOI

[48] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7 (2013), 435–443 | DOI | MR | Zbl

[49] V. V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Tech. Phys., 56 (2015), 321–329 | DOI | MR | Zbl

[50] B. M. Singh, J. G. Rokne, R. S. Dhaliwal, “Closed form solution for an annular elliptic crack around an elliptic rigid inclusion in an infinite solid”, Z. Angew. Math. Mech., 92 (2012), 882–887 | DOI | MR | Zbl

[51] T. E. Tezduyar, T. Wheeler, L. Graux, “Finite deformation of a circular elastic membrane containing a concentric rigid inclusion”, Int. J. Nonlin. Mech., 22 (1987), 61–72 | DOI | Zbl