Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a73, author = {E. M. Rudoy and V. V. Shcherbakov}, title = {Domain decomposition method for a membrane with a delaminated thin rigid inclusion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {395--410}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/} }
TY - JOUR AU - E. M. Rudoy AU - V. V. Shcherbakov TI - Domain decomposition method for a membrane with a delaminated thin rigid inclusion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 395 EP - 410 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/ LA - en ID - SEMR_2016_13_a73 ER -
%0 Journal Article %A E. M. Rudoy %A V. V. Shcherbakov %T Domain decomposition method for a membrane with a delaminated thin rigid inclusion %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 395-410 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/ %G en %F SEMR_2016_13_a73
E. M. Rudoy; V. V. Shcherbakov. Domain decomposition method for a membrane with a delaminated thin rigid inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 395-410. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a73/
[1] G. Allaire, Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation, Oxford University Press, 2007 | MR | Zbl
[2] G. P. Astrakhantsev, “Domain decomposition method for the problem of bending heterogeneous plate”, Comput. Math. Math. Phys., 38 (1998), 1686–1694 | MR | Zbl
[3] G. Bayada, J. Sabil, T. Sassi, “A Neumann–Neumann domain decomposition algorithm for the Signorini problem”, Appl. Math. Lett., 17 (2004), 1153–1159 | DOI | MR | Zbl
[4] G. Bayada, J. Sabil, T. Sassi, “Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb's friction law”, ESAIM Math. Model. Num., 42 (2008), 243–262 | DOI | MR | Zbl
[5] D. Bigoni, F. Dal Corso, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part II: Implications on shear band nucleation, growth and energy release rate”, J. Mech. Phys. Solids., 56 (2008), 839–857 | DOI | MR | Zbl
[6] R. A. Chaudhuri, “On three-dimensional singular stress/residual stress fields at the front of a crack/anticrack in an orthotropic/orthorhombic plate under anti-plane shear loading”, Comp. Struct., 92 (2010), 1977–1984 | DOI
[7] G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, 1979 | Zbl
[8] F. Dal Corso, D. Bigoni, M. Gei, “The stress concentration near a rigid line inclusion in a prestressed, elastic material. Part I: Full-field solution and asymptotics”, J. Mech. Phys. Solids, 56 (2008), 815–838 | DOI | MR | Zbl
[9] J. Daněk, I. Hlaváček, J. Nedomac, “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity”, Math. Comp. Sim., 68 (2005), 271–300 | DOI | MR | Zbl
[10] Z. Dostál, F. A. M. Gomes Neto, S. A. Santos, “Solution of contact problems by FETI domain decomposition with natural coarse space projections”, Comput. Methods Appl. Mech. Engrg., 190 (2000), 1611–1627 | DOI | Zbl
[11] Z. Dostál, D. Horák, D. Stefanica, “A scalable FETI-DP algorithm with non-penetration mortar conditions on contact interface”, J. of Comp. Appl. Math., 231 (2009), 577–591 | DOI | MR | Zbl
[12] I. Ekeland I., R. Temam, Convex Analysis and Variational Problems, SIAM, 1999 | MR | Zbl
[13] G. Geymonat, F. Krasucki, D. Marini, M. Vidrascu, “A domain decomposition method for a bonded structure”, Math. Models Meth. Appl. Sci., 8 (1998), 1387–1402 | DOI | MR | Zbl
[14] R. Glowinski, J.-L. Lions, R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, 1981 | MR | Zbl
[15] P. Grisvard, Singularities in Boundary Value Problems, Springer, 1991 | MR
[16] J. Haslinger, R. Kučera, J. Riton, T. Sassi, “A domain decomposition method for two-body contact problems with Tresca friction”, Adv. Comput. Mathematics, 40 (2014), 65–90 | DOI | MR | Zbl
[17] J. Haslinger, R. Kučera, T. Sassi, “A domain decomposition algorithm for contact problems: analysis and implementation”, Math. Model. Nat. Phenom., 4 (2009), 123–146 | DOI | MR | Zbl
[18] K. Ito, K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, SIAM, 2008 | MR | Zbl
[19] G. Kerr, G. Melrose, J. Tweed, “Antiplane shear of a strip containing a staggered array of rigid line inclusions”, Math. Comput. Model, 25 (1997), 11–18 | DOI | MR | Zbl
[20] A. M. Khludnev, “Thin rigid inclusions with delaminations in elastic plates”, Europ. J. Mech. A/Solids, 29 (2010), 69–75 | DOI | MR
[21] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, 2000
[22] A. M. Khludnev, V. A. Kovtunenko, A. Tani, “On the topological derivative due to kink of a crack with non-penetration. Anti-plane model”, J. Math. Pures Appl., 94 (2010), 571–596 | DOI | MR | Zbl
[23] A. M. Khludnev, V. A. Kozlov, “Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions”, Z. Angew. Math. Phys., 59 (2008), 264–280 | DOI | MR | Zbl
[24] A. M. Khludnev, G. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91 (2011), 125–137 | DOI | MR | Zbl
[25] A. M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Methods Appl. Sci., 33 (2010), 1955–1967 | MR | Zbl
[26] A. M. Khludnev, G. Leugering, M. Specovius-Neugebauer, “Optimal control of inclusion and crack shapes in elastic bodies”, J. Optim. Theory Appl., 155 (2012), 54–78 | DOI | MR | Zbl
[27] A. M. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64 (2013), 179–191 | DOI | MR | Zbl
[28] A. M. Khludnev, K. Ohtsuka, J. Sokolowski, “On derivative of energy functional for elastic bodies with a crack and unilateral conditions”, Quart. Appl. Math., 60 (2002), 99–109 | MR | Zbl
[29] A. M. Khludnev, A. Tani, “Overlapping domain problems in the crack theory with possible contact between crack faces”, Quart. Appl. Math., 66 (2008), 423–435 | DOI | MR | Zbl
[30] J. Koko, “Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows”, J. Sci. Comput., 26 (2006), 195–215 | DOI | MR | Zbl
[31] J. Koko, “Uzawa block relaxation domain decomposition method for the two-body contact problem with Tresca friction”, Comput. Methods Appl. Mech. Engrg., 198 (2008), 420–431 | DOI | MR | Zbl
[32] V. A. Kovtunenko, “Sensitivity of cracks in 2D-Lamé problem via material derivatives”, Z. angew. Math. Phys., 52 (2001), 1071–1087 | DOI | MR | Zbl
[33] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, 85, AMS, 2001 | MR | Zbl
[34] Yu. M. Laevsky, A. M. Matsokin, “Decomposition methods for the solution to elliptic and parabolic boundary value problems”, Sib. Zh. Vychisl. Mat., 2 (1999), 361–372
[35] E. Laitinen, A. V. Lapin, J. Pieskä, “Splitting iterative methods and parallel solution of variational inequalities”, Lobachevskii J. Math., 8 (2001), 167–184 | MR | Zbl
[36] N. P. Lazarev, E. M. Rudoy, “Shape sensitivity analysis of Timoshenko's plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl
[37] G. Leugering, A. M. Khludnev, “On the equilibrium of elastic bodies containing thin rigid inclusions”, Dokl. Phys., 55 (2010), 18–22 | DOI | Zbl
[38] M. D. Gunzburger, H. K. Lee, “An optimization-based domain decomposition method for the Navier–Stokes equations”, SIAM J. Numer. Anal., 37 (2000), 1455–1480 | DOI | MR | Zbl
[39] M. S. Nerantzakia, C. B. Kandilas, “Geometrically nonlinear analysis of elastic membranes with embedded rigid inclusions”, Eng. Anal. Bound. Elem., 31 (2007), 216–225 | DOI
[40] P. I. Plotnikov, E. M. Rudoy, “Shape sensitivity analysis of energy integrals for bodies with rigid inclusions and cracks”, Dokl. Math., 84 (2011), 681–684 | DOI | MR | Zbl
[41] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Clarendon Press, 1999 | MR | Zbl
[42] E. M. Rudoi, “Invariant integrals in a planar problem of elasticity theory for bodies with rigid inclusions and cracks”, J. Appl. Ind. Math., 6 (2012), 371–380 | DOI | MR | Zbl
[43] E. M. Rudoy, “The Griffith formula and Cherepanov–Rice integral for a plate with a rigid inclusion and a crack”, J. Math. Sci., 186 (2012), 511–529 | DOI | MR
[44] E. M. Rudoy, “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack”, J. Appl. Mech. Techn. Phys., 52 (2011), 252–263 | DOI | MR
[45] E. M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges”, Comput. Math. Math. Phys., 55 (2015), 305–316 | DOI | MR | Zbl
[46] E. M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, ZAMP. Z. Angew. Math. Phys., 66 (2015), 1923–1937 | DOI | MR | Zbl
[47] E. M. Rudoy, “First-order and second-order sensitivity analyses for a body with a thin rigid inclusion”, Math. Methods Appl. Sci., 2015 | DOI
[48] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7 (2013), 435–443 | DOI | MR | Zbl
[49] V. V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Tech. Phys., 56 (2015), 321–329 | DOI | MR | Zbl
[50] B. M. Singh, J. G. Rokne, R. S. Dhaliwal, “Closed form solution for an annular elliptic crack around an elliptic rigid inclusion in an infinite solid”, Z. Angew. Math. Mech., 92 (2012), 882–887 | DOI | MR | Zbl
[51] T. E. Tezduyar, T. Wheeler, L. Graux, “Finite deformation of a circular elastic membrane containing a concentric rigid inclusion”, Int. J. Nonlin. Mech., 22 (1987), 61–72 | DOI | Zbl