Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a72, author = {R. V. Brizitskii and Zh. Yu. Saritskaya and A. I. Byrganov}, title = {Multiplicative control problems for nonlinear convection{\textendash}diffusion{\textendash}reaction equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {352--360}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/} }
TY - JOUR AU - R. V. Brizitskii AU - Zh. Yu. Saritskaya AU - A. I. Byrganov TI - Multiplicative control problems for nonlinear convection–diffusion–reaction equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 352 EP - 360 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/ LA - en ID - SEMR_2016_13_a72 ER -
%0 Journal Article %A R. V. Brizitskii %A Zh. Yu. Saritskaya %A A. I. Byrganov %T Multiplicative control problems for nonlinear convection–diffusion–reaction equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 352-360 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/ %G en %F SEMR_2016_13_a72
R. V. Brizitskii; Zh. Yu. Saritskaya; A. I. Byrganov. Multiplicative control problems for nonlinear convection–diffusion–reaction equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 352-360. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/
[1] V. Becker, M. Braack, B. Vexler, “Numerical parameter estimation for chemical models in multidimensional reactive flows”, Combust. Theory Modelling, 8 (2004), 661–682 | MR | Zbl
[2] G. V. Alekseev, M. A. Shepelov, “On stability of solutions of the coefficient inverse extremal problems for the stationary convection–diffusion–reaction equation”, Journal of Applied and Industrial Mathematics, 1 (2013), 1–14 | MR
[3] G. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9 (2001), 435–468 | MR | Zbl
[4] G. V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory”, Comp. Math. Math. Phys., 42 (2002), 363–376 | MR | Zbl
[5] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Identification problems for a steady-state model of mass transfer”, J. Appl. Mech. Tech. Phys., 49 (2008), 537–547 | MR | Zbl
[6] G. V. Alekseev, D. A. Tereshko, “Two parameter extremum problems of boundary control for stationary thermal convection equations”, Comp. Math. Math. Phys., 51 (2011), 1539–1557 | MR | Zbl
[7] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 52 (2012), 1635–1649 | MR | Zbl
[8] G. V. Alekseev, R. V. Brizitskii, Zh. Y. Saritskaya, “Extremum problem's solutions' stability estimates for nonlinear convection-diffusion-reaction equation”, Journal of Applied and Industrial Mathematics, 10 (2016), 3–16
[9] R. V. Brizitskii, Zh. Y. Saritskaya, “Boundary value and optimal control problems for nonlinear convection-diffusion-reaction equation”, Siberian Electronic Mathematical Reports, 12 (2015), 447–456
[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | MR | Zbl
[11] A. E. Kovtanyuk, A. Yu. Chebotarev, “Steady-state problem of complex heat transfer”, Comp. Math. Math. Phys., 54 (2014), 719–726 | MR | Zbl
[12] P. Grisvard, Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl
[13] A. D. Ioffe, V. M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR | Zbl
[14] J. Cea, Lectures on Optimization. Theory and Algorithms, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR | Zbl