Multiplicative control problems for nonlinear convection–diffusion–reaction equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 352-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

Control problem for convection-diffusion-reaction equation, in which reaction coefficient depends nonlinearly on substance's concentration, is considered. Velocity vector, multiplicatively entered into the considered equation, is chosen as a control function. Extremum problem's solvability for reaction coefficient of common type is proved. Optimality system for quadratic reaction coefficient is obtained and on its basis local uniqueness of control problem's solutions for particular cost functionals is proved.
Keywords: multiplicative control problems, optimality system, local uniqueness.
Mots-clés : convection-diffusion-reaction equation
@article{SEMR_2016_13_a72,
     author = {R. V. Brizitskii and Zh. Yu. Saritskaya and A. I. Byrganov},
     title = {Multiplicative control problems for nonlinear convection{\textendash}diffusion{\textendash}reaction equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {352--360},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
AU  - A. I. Byrganov
TI  - Multiplicative control problems for nonlinear convection–diffusion–reaction equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 352
EP  - 360
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/
LA  - en
ID  - SEMR_2016_13_a72
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%A A. I. Byrganov
%T Multiplicative control problems for nonlinear convection–diffusion–reaction equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 352-360
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/
%G en
%F SEMR_2016_13_a72
R. V. Brizitskii; Zh. Yu. Saritskaya; A. I. Byrganov. Multiplicative control problems for nonlinear convection–diffusion–reaction equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 352-360. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a72/

[1] V. Becker, M. Braack, B. Vexler, “Numerical parameter estimation for chemical models in multidimensional reactive flows”, Combust. Theory Modelling, 8 (2004), 661–682 | MR | Zbl

[2] G. V. Alekseev, M. A. Shepelov, “On stability of solutions of the coefficient inverse extremal problems for the stationary convection–diffusion–reaction equation”, Journal of Applied and Industrial Mathematics, 1 (2013), 1–14 | MR

[3] G. V. Alekseev, E. A. Adomavichus, “Theoretical analysis of inverse extremal problems of admixture diffusion in viscous fluid”, J. Inverse Ill-Posed Probl., 9 (2001), 435–468 | MR | Zbl

[4] G. V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory”, Comp. Math. Math. Phys., 42 (2002), 363–376 | MR | Zbl

[5] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Identification problems for a steady-state model of mass transfer”, J. Appl. Mech. Tech. Phys., 49 (2008), 537–547 | MR | Zbl

[6] G. V. Alekseev, D. A. Tereshko, “Two parameter extremum problems of boundary control for stationary thermal convection equations”, Comp. Math. Math. Phys., 51 (2011), 1539–1557 | MR | Zbl

[7] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Stability estimates in identification problems for the convection-diffusion-reaction equation”, Comp. Math. Math. Phys., 52 (2012), 1635–1649 | MR | Zbl

[8] G. V. Alekseev, R. V. Brizitskii, Zh. Y. Saritskaya, “Extremum problem's solutions' stability estimates for nonlinear convection-diffusion-reaction equation”, Journal of Applied and Industrial Mathematics, 10 (2016), 3–16

[9] R. V. Brizitskii, Zh. Y. Saritskaya, “Boundary value and optimal control problems for nonlinear convection-diffusion-reaction equation”, Siberian Electronic Mathematical Reports, 12 (2015), 447–456

[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409 (2014), 808–815 | MR | Zbl

[11] A. E. Kovtanyuk, A. Yu. Chebotarev, “Steady-state problem of complex heat transfer”, Comp. Math. Math. Phys., 54 (2014), 719–726 | MR | Zbl

[12] P. Grisvard, Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[13] A. D. Ioffe, V. M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR | Zbl

[14] J. Cea, Lectures on Optimization. Theory and Algorithms, Springer-Verlag, Berlin–Heidelberg–New York, 1978 | MR | Zbl