Singular solutions of one-dimensional SH wave equation in porous media
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 300-304

Voir la notice de l'article provenant de la source Math-Net.Ru

Singular solutions of the IS equation for SH waves in an elasticporous medium are obtained. For expansion coefficients of wave fields a system of Volterra integral equations of the second kind are obtained. It is shwn that at vanishing of proposity these coefficients are transformed into well known expressions for the coefficients of expansion of wave fields for an elastic model.
Keywords: hyperbolic system, the porous medium, SH waves
Mots-clés : the friction coefficient.
@article{SEMR_2016_13_a71,
     author = {A. E. Kholmurodov and G. Toshmurodova},
     title = {Singular solutions of one-dimensional {SH} wave equation in porous media},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {300--304},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/}
}
TY  - JOUR
AU  - A. E. Kholmurodov
AU  - G. Toshmurodova
TI  - Singular solutions of one-dimensional SH wave equation in porous media
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 300
EP  - 304
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/
LA  - ru
ID  - SEMR_2016_13_a71
ER  - 
%0 Journal Article
%A A. E. Kholmurodov
%A G. Toshmurodova
%T Singular solutions of one-dimensional SH wave equation in porous media
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 300-304
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/
%G ru
%F SEMR_2016_13_a71
A. E. Kholmurodov; G. Toshmurodova. Singular solutions of one-dimensional SH wave equation in porous media. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 300-304. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/