Singular solutions of one-dimensional SH wave equation in porous media
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 300-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

Singular solutions of the IS equation for SH waves in an elasticporous medium are obtained. For expansion coefficients of wave fields a system of Volterra integral equations of the second kind are obtained. It is shwn that at vanishing of proposity these coefficients are transformed into well known expressions for the coefficients of expansion of wave fields for an elastic model.
Keywords: hyperbolic system, the porous medium, SH waves
Mots-clés : the friction coefficient.
@article{SEMR_2016_13_a71,
     author = {A. E. Kholmurodov and G. Toshmurodova},
     title = {Singular solutions of one-dimensional {SH} wave equation in porous media},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {300--304},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/}
}
TY  - JOUR
AU  - A. E. Kholmurodov
AU  - G. Toshmurodova
TI  - Singular solutions of one-dimensional SH wave equation in porous media
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 300
EP  - 304
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/
LA  - ru
ID  - SEMR_2016_13_a71
ER  - 
%0 Journal Article
%A A. E. Kholmurodov
%A G. Toshmurodova
%T Singular solutions of one-dimensional SH wave equation in porous media
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 300-304
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/
%G ru
%F SEMR_2016_13_a71
A. E. Kholmurodov; G. Toshmurodova. Singular solutions of one-dimensional SH wave equation in porous media. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 300-304. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a71/

[1] A. S. Alekseev, Kh. Kh. Imomnazarov, E. Grachev, T. T. Rakhmonov, B. Kh. Imomnazarov, “Direct and inverse dynamic problems for a system of equations of homogeneous elastic-porous media”, Mathematical Methods in Geophysics, Proceedings of the International Conference, v. ch. 1, ICMMG Russian Academy of Sciences, Novosibirsk, 2003, 99–106 | MR

[2] V. G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 | MR | Zbl

[3] M. I. Belishevyaev, A. S. Blagoveshinskiy, Dynamical inverse problem of the theory of waves, Publishing House of St.-Petersburg University, St. Petersburg, 1999

[4] V. N. Darovskiy, J. V. Perepechko, E. E. Romenskiy, “EI Wave processes in saturated porous elastically deformable environments”, SCF, 1 (1993), 100–111

[5] A. M. Blokhin, V. N. Dorovsky, Mathematical modeling in the theory of multi velocity continuum, Nova science publishers, Inc, New York, 1995, 192–194 | MR

[6] Kh. Kh. Imomnazarov, “Estimates of conditional stability of some combined inverse problems for Maxwell's equations and equations of porous media”, Comp. Appl. Math., 20 (2001), 20–34 | MR | Zbl

[7] Kh. Kh. Imomnazarov, “Numerical modeling of some problems in filtration theory for porous media”, Sib. Zh. Ind. Mat., 4:2 (2001), 154–165 | MR | Zbl

[8] V. S. Vladimirov, Generalized functions in mathematical physics, Nauka, M., 1979 | MR | Zbl

[9] Kh. Kh. Imomnazarov, “A few notes about the system Bio”, Reports of the Academy of Sciences of equations, 373:4 (2000), 536–537 | MR | Zbl