An identification problem for singular systems with a small parameter in chemical kinetics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 175-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Direct and inverse problems for singular systems with small parameter are stated, which describe catalytic reactions in chemical kinetics. The solution of the direct problem is based on the method of integral manifolds. The inverse problem reduces to finding the coefficients of the polynomial in the right-hand part of the slow equation according to the solution given on the slow surface of the system. The above arguments make it possible to obtain existence and uniqueness condition for the coefficients in the right-hand part of the slow system.
Keywords: mathematical modeling, singularly perturbed system, integral manifold, slow surface, inverse problem.
@article{SEMR_2016_13_a70,
     author = {L. I. Kononenko},
     title = {An identification problem for singular systems with a small parameter in chemical kinetics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {175--180},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - An identification problem for singular systems with a small parameter in chemical kinetics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 175
EP  - 180
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/
LA  - ru
ID  - SEMR_2016_13_a70
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T An identification problem for singular systems with a small parameter in chemical kinetics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 175-180
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/
%G ru
%F SEMR_2016_13_a70
L. I. Kononenko. An identification problem for singular systems with a small parameter in chemical kinetics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 175-180. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/