An identification problem for singular systems with a small parameter in chemical kinetics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 175-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Direct and inverse problems for singular systems with small parameter are stated, which describe catalytic reactions in chemical kinetics. The solution of the direct problem is based on the method of integral manifolds. The inverse problem reduces to finding the coefficients of the polynomial in the right-hand part of the slow equation according to the solution given on the slow surface of the system. The above arguments make it possible to obtain existence and uniqueness condition for the coefficients in the right-hand part of the slow system.
Keywords: mathematical modeling, singularly perturbed system, integral manifold, slow surface, inverse problem.
@article{SEMR_2016_13_a70,
     author = {L. I. Kononenko},
     title = {An identification problem for singular systems with a small parameter in chemical kinetics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {175--180},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - An identification problem for singular systems with a small parameter in chemical kinetics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 175
EP  - 180
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/
LA  - ru
ID  - SEMR_2016_13_a70
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T An identification problem for singular systems with a small parameter in chemical kinetics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 175-180
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/
%G ru
%F SEMR_2016_13_a70
L. I. Kononenko. An identification problem for singular systems with a small parameter in chemical kinetics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 175-180. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a70/

[1] A. Ermakova, Macrokinetics methods used in mathematical modeling of chemical processes and reactors, Institut kataliza SO RAN im. G. K. Boreskova, Novosibirsk, 2001 (in Russian)

[2] Yu. A. Mitropol'skii, O. B. Lykova, Integral manifolds in nonlinear mechanics, Nauka, M., 1973 (in Russian) | MR

[3] A. V. Vasil'eva, V. F. Butuzov, Singularly perturbed equations in critical cases, Moskov. Gos. Univ., M., 1978 (in Russian) | MR

[4] V. M. Gol'dshtein, V. A. Sobolev, Qualitative analysis of singularly perturbed systems, Inst. Math., Novosibirsk, 1988 (in Russian)

[5] N. V. Voropaeva, V. A. Sobolev, Geometric decomposition of singularly perturbed systems, Fizmatlit, M., 2009 (in Russian) | Zbl

[6] A. N. Tikhonov, “On the Dependence of solutions to differential equations on a small parameter”, Mat. Sb. (N.S.), 22:2 (1948), 193–204 (in Russian) | MR | Zbl

[7] L. I. Kononenko, “On the smoothness of slow surfaces of singularly perturbed systems”, Sib. Zh. Ind. Mat., 5:2 (2002), 109–125 (in Russian) | MR | Zbl

[8] V. G. Romanov, L. I. Slinyucheva, “Inverse problem for the first order linear hyperbolic system”, Matematicheskie problemy geofiziki, 3, VC SO AN USSR, Novosibirsk, 1972, 187–215 (in Russian)

[9] S. I. Kabanikhin, Inverse and ill-posed problems. Theory and applications, Inverse and Ill-Posed Problems Series, 55, de Gruyter, Berlin, 2012 | MR | Zbl

[10] L. I. Kononenko, “Direct and inverse problems for a singular system with slow and fast variables in chemical kinetics”, Vladikavkaz. Mat. Zh., 17:1 (2015), 39–46 (in Russian)

[11] M. M. Lavrent'ev, V. G. Romanov, S. P. Shishatskij, Ill-posed problems of mathematical physics and analysis, Transl. from the Russian by J. R. Schulenberger, Translations of Mathematical Monographs, 64, ed. Lev J. Leifman, American Mathematical Society (AMS), Providence, R.I., 1986, vi+290 pp. | MR | Zbl