Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a69, author = {A. M. Meirmanov and S. A. Gritsenko and A. A. Gerus}, title = {The homogenized models of the isothermal acoustics in the configuration <<fluid--poroelastic medium>>}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {49--74}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/} }
TY - JOUR AU - A. M. Meirmanov AU - S. A. Gritsenko AU - A. A. Gerus TI - The homogenized models of the isothermal acoustics in the configuration <> JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 49 EP - 74 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/ LA - ru ID - SEMR_2016_13_a69 ER -
%0 Journal Article %A A. M. Meirmanov %A S. A. Gritsenko %A A. A. Gerus %T The homogenized models of the isothermal acoustics in the configuration <> %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 49-74 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/ %G ru %F SEMR_2016_13_a69
A. M. Meirmanov; S. A. Gritsenko; A. A. Gerus. The homogenized models of the isothermal acoustics in the configuration <>. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 49-74. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/
[1] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer, Berlin, 1980 | MR
[2] N. S. Bakhvalov, G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Spinger, New York, 1989
[3] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994 | MR
[4] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[5] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl
[6] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, Rhode Island, 1968 | MR
[8] A. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48 (2007), 519–538 | DOI | MR | Zbl
[9] A. Meirmanov, “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, Euro. Jnl. of Applied Mathematics, 19 (2008), 259–284 | MR | Zbl
[10] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[11] A. Meirmanov, “Acoustics Equations in Elastic Porous Media”, Sibirskii Zhurnal Industrial'noi Matematiki, 13:2 (2010), 98–110 | MR | Zbl
[12] A. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, Journal of Mathematical Sciences, 163:2 (2009), 111–172 | DOI | MR
[13] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures et Appl., 64 (1985), 31–75 | MR | Zbl