The homogenized models of the isothermal acoustics in the configuration >
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 49-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of the isothermal acoustics in composite medium with two different components: liquid region and the elastic body perforated by a system of pores, filled the same liquid. The model is based on the classical axioms of continuum mechanics and contains rapidly oscillating coefficients that depend on a small parameter. Such a model, although precise enough, cannot, however, be used for numerical calculations. The problem is solved by using homogenization, i. e. the derivation of the equations not containing rapidly oscillating coefficients. Separately for the fluid and separately for poroelastic medium results already obtained previously. In this configuration of the two-component medium the main problem is the conditions of continuity at the common boundary between the liquid region and poroelastic region. In the present work are displayed six homogenized models of different complexity with the various coefficients characterizing the medium.
Keywords: composite medium, periodic structure, isothermal Stokes equations, acoustic equation, poro-elasticity, homogenization of periodic structures, two-scale convergence.
@article{SEMR_2016_13_a69,
     author = {A. M. Meirmanov and S. A. Gritsenko and A. A. Gerus},
     title = {The homogenized models of the isothermal acoustics in the configuration <<fluid--poroelastic medium>>},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {49--74},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - S. A. Gritsenko
AU  - A. A. Gerus
TI  - The homogenized models of the isothermal acoustics in the configuration <>
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 49
EP  - 74
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/
LA  - ru
ID  - SEMR_2016_13_a69
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A S. A. Gritsenko
%A A. A. Gerus
%T The homogenized models of the isothermal acoustics in the configuration <>
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 49-74
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/
%G ru
%F SEMR_2016_13_a69
A. M. Meirmanov; S. A. Gritsenko; A. A. Gerus. The homogenized models of the isothermal acoustics in the configuration <>. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 49-74. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a69/

[1] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer, Berlin, 1980 | MR

[2] N. S. Bakhvalov, G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Spinger, New York, 1989

[3] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994 | MR

[4] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[5] G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[6] D. Lukkassen, G. Nguetseng, P. Wall, “Two-scale convergence”, Int. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, Rhode Island, 1968 | MR

[8] A. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48 (2007), 519–538 | DOI | MR | Zbl

[9] A. Meirmanov, “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, Euro. Jnl. of Applied Mathematics, 19 (2008), 259–284 | MR | Zbl

[10] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[11] A. Meirmanov, “Acoustics Equations in Elastic Porous Media”, Sibirskii Zhurnal Industrial'noi Matematiki, 13:2 (2010), 98–110 | MR | Zbl

[12] A. Meirmanov, “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, Journal of Mathematical Sciences, 163:2 (2009), 111–172 | DOI | MR

[13] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures et Appl., 64 (1985), 31–75 | MR | Zbl