Junction problem for Euler--Bernoulli and Timoshenko elastic beams
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider а junction problem for the system Euler–Bernoulli and Timoshenko elastic beams and а contact problem for the two connecting beams. Unique solvability of these problems is proved. Under the assumption that solutions are smooth we find the corresponding differential formulations of the initial variational problems. In particular junction conditions on the border of bonding interface obtained. The analytical solution for a beams with a cut is given.
Keywords: junction conditions, variational problems, Timoshenko beam, crack.
Mots-clés : Euler–Bernoulli beam
@article{SEMR_2016_13_a68,
     author = {N. V. Neustroeva and N. P. Lazarev},
     title = {Junction problem for {Euler--Bernoulli} and {Timoshenko} elastic beams},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {26--37},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/}
}
TY  - JOUR
AU  - N. V. Neustroeva
AU  - N. P. Lazarev
TI  - Junction problem for Euler--Bernoulli and Timoshenko elastic beams
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 26
EP  - 37
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/
LA  - ru
ID  - SEMR_2016_13_a68
ER  - 
%0 Journal Article
%A N. V. Neustroeva
%A N. P. Lazarev
%T Junction problem for Euler--Bernoulli and Timoshenko elastic beams
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 26-37
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/
%G ru
%F SEMR_2016_13_a68
N. V. Neustroeva; N. P. Lazarev. Junction problem for Euler--Bernoulli and Timoshenko elastic beams. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 26-37. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/

[1] A. A. Samarskii, V. B. Andreev, Difference methods for elliptic equations, Nauka, M., 1976 | MR | Zbl

[2] P. G. Ciarlet, H. Le Dret, R. Nzengwa, “Junctions between three dimensional and two dimensional linearly elastic structures”, J. Math. Pures Appl., 68:3 (1989), 261–295 | MR | Zbl

[3] H. Le Dret, “Modeling of a folded plate”, Computational mechanics, 5:6 (1990), 401–416 | DOI | Zbl

[4] A. Gaudiello, E. Zappale, “A model of joined beams as limit of a 2D plate”, J. Elasticity, 103:2 (2011), 205–233 | DOI | MR | Zbl

[5] Yu. A. Bogan, “Junction conditions A. Samarsky and V. Andreev in the theory of elastic beams”, Mathematical notes, 39:5 (2012), 662–669 | MR | Zbl

[6] H. Le Dret, “Modeling of the junction between two rods”, J. Math. Pures Appl., 68:3 (1989), 365–397 | MR | Zbl

[7] A. Gaudiello, R. Monneau, J. Mossino et al., “Junctions of elastic plates and beams”, J. Control, Optimisation and Calculus of Variations, 13:3 (2007), 419–457 | DOI | MR | Zbl

[8] T. Durante, G. Cardone, S. A. Nasarov, “Modeling junction of plates and beams by means of self-adjoint extensions”, J. Control, Vestnik St. Peterburg University. Mathematics, 42:2 (2009), 67–75 | DOI | MR | Zbl

[9] A. M. Khludnev, K. Hoffmann, N. D. Botkin, “The variational contact problem for elastic objects of different dimensions”, Sibirsk. Mat. Zh., 47:3 (2006), 707–717 | MR | Zbl

[10] A. M. Khludnev, G. Leugering, “Unilateral contact problems for two perpendicular elastic structures”, Journal for Analysis and its Applications, 27:2 (2008), 157–177 | MR | Zbl

[11] N. V. Neustroeva, “Contact problem for elastic bodies of different dimensions”, Vestnik of Novosibirsk State University (math., mech., informatics), 8:4 (2008), 60–75 | Zbl

[12] N. P. Lasarev, “Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, Journal of Applied Mechanics and Technical Physics, 54:2 (2013), 322–330 | DOI | MR

[13] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, Journal of Applied and Industrial Mathematics, 16:1 (2013), 138–147 | MR | Zbl

[14] V. A. Kovtunenko, “Solution of the problem of a beam with a cut”, Journal of Applied Mechanics and Technical Physics, 37:4 (1996), 595–600 | DOI | Zbl

[15] V. A. Kovtunenko, A. N. Leontyev, A. M. Khludnev, “On equilibrium problem for a plate with an inclined cut”, Journal of Applied Mechanics and Technical Physics, 39:2 (1998), 164–174 | DOI | MR | Zbl

[16] N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with an oblique crack”, Journal of Applied Mechanics and Technical Physics, 54:4 (2013), 662–671 | DOI | MR | Zbl

[17] A. M. Khludnev, V. A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000

[18] A. M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010

[19] A. M. Khludnev, “On Timoshenko thin elastic inclusion inside elastic bodies”, Mathematics and Mechanics of Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl

[20] A. M. Khludnev, G. R. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Mathematics and mechanics of complex systems, 2:1 (2014), 1–21 | DOI | MR | Zbl

[21] H. Itou, G. Leugering, A. M. Khludnev, “Timoshenko thin inclusion in an elastic body with possible delamination”, Doklady Physics, 59:9 (2014), 401–404 | DOI | MR

[22] K. Vasidzu, Variational Methods in the Theory of Elasticity and Plasticity, Mir, M., 1987

[23] B. L. Pelekh, Theory of Shells with Finite Shear Stiffness, Nauk. Dumka, Kiev, 1973 | Zbl