Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a68, author = {N. V. Neustroeva and N. P. Lazarev}, title = {Junction problem for {Euler--Bernoulli} and {Timoshenko} elastic beams}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {26--37}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/} }
TY - JOUR AU - N. V. Neustroeva AU - N. P. Lazarev TI - Junction problem for Euler--Bernoulli and Timoshenko elastic beams JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 26 EP - 37 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/ LA - ru ID - SEMR_2016_13_a68 ER -
N. V. Neustroeva; N. P. Lazarev. Junction problem for Euler--Bernoulli and Timoshenko elastic beams. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 26-37. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a68/
[1] A. A. Samarskii, V. B. Andreev, Difference methods for elliptic equations, Nauka, M., 1976 | MR | Zbl
[2] P. G. Ciarlet, H. Le Dret, R. Nzengwa, “Junctions between three dimensional and two dimensional linearly elastic structures”, J. Math. Pures Appl., 68:3 (1989), 261–295 | MR | Zbl
[3] H. Le Dret, “Modeling of a folded plate”, Computational mechanics, 5:6 (1990), 401–416 | DOI | Zbl
[4] A. Gaudiello, E. Zappale, “A model of joined beams as limit of a 2D plate”, J. Elasticity, 103:2 (2011), 205–233 | DOI | MR | Zbl
[5] Yu. A. Bogan, “Junction conditions A. Samarsky and V. Andreev in the theory of elastic beams”, Mathematical notes, 39:5 (2012), 662–669 | MR | Zbl
[6] H. Le Dret, “Modeling of the junction between two rods”, J. Math. Pures Appl., 68:3 (1989), 365–397 | MR | Zbl
[7] A. Gaudiello, R. Monneau, J. Mossino et al., “Junctions of elastic plates and beams”, J. Control, Optimisation and Calculus of Variations, 13:3 (2007), 419–457 | DOI | MR | Zbl
[8] T. Durante, G. Cardone, S. A. Nasarov, “Modeling junction of plates and beams by means of self-adjoint extensions”, J. Control, Vestnik St. Peterburg University. Mathematics, 42:2 (2009), 67–75 | DOI | MR | Zbl
[9] A. M. Khludnev, K. Hoffmann, N. D. Botkin, “The variational contact problem for elastic objects of different dimensions”, Sibirsk. Mat. Zh., 47:3 (2006), 707–717 | MR | Zbl
[10] A. M. Khludnev, G. Leugering, “Unilateral contact problems for two perpendicular elastic structures”, Journal for Analysis and its Applications, 27:2 (2008), 157–177 | MR | Zbl
[11] N. V. Neustroeva, “Contact problem for elastic bodies of different dimensions”, Vestnik of Novosibirsk State University (math., mech., informatics), 8:4 (2008), 60–75 | Zbl
[12] N. P. Lasarev, “Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, Journal of Applied Mechanics and Technical Physics, 54:2 (2013), 322–330 | DOI | MR
[13] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, Journal of Applied and Industrial Mathematics, 16:1 (2013), 138–147 | MR | Zbl
[14] V. A. Kovtunenko, “Solution of the problem of a beam with a cut”, Journal of Applied Mechanics and Technical Physics, 37:4 (1996), 595–600 | DOI | Zbl
[15] V. A. Kovtunenko, A. N. Leontyev, A. M. Khludnev, “On equilibrium problem for a plate with an inclined cut”, Journal of Applied Mechanics and Technical Physics, 39:2 (1998), 164–174 | DOI | MR | Zbl
[16] N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with an oblique crack”, Journal of Applied Mechanics and Technical Physics, 54:4 (2013), 662–671 | DOI | MR | Zbl
[17] A. M. Khludnev, V. A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000
[18] A. M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010
[19] A. M. Khludnev, “On Timoshenko thin elastic inclusion inside elastic bodies”, Mathematics and Mechanics of Solids, 20:5 (2015), 495–511 | DOI | MR | Zbl
[20] A. M. Khludnev, G. R. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Mathematics and mechanics of complex systems, 2:1 (2014), 1–21 | DOI | MR | Zbl
[21] H. Itou, G. Leugering, A. M. Khludnev, “Timoshenko thin inclusion in an elastic body with possible delamination”, Doklady Physics, 59:9 (2014), 401–404 | DOI | MR
[22] K. Vasidzu, Variational Methods in the Theory of Elasticity and Plasticity, Mir, M., 1987
[23] B. L. Pelekh, Theory of Shells with Finite Shear Stiffness, Nauk. Dumka, Kiev, 1973 | Zbl