On plateaued Boolean functions with the same spectrum support
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1346-1368.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first half of the paper we give a brief review of plateaued functions, regular functions and related topics including connections with problems on subgraphs of the Hamming graph. In the second half of the paper we discover wide infinite families of spectrum supports for which it is possible to count the number of plateaued Boolean functions with such spectrum supports and give corresponding formulas; only one infinite sequence of such spectrum supports was known before.
Keywords: plateaued functions, Boolean functions, Walsh Spectrum, Fourier spectrum, spectrum support, spectral analysis, regular functions, correlation immune functions, $m$-resilient functions, address function, recursive constructions, Hamming graph, regular graphs, symmetries.
Mots-clés : spectra, equitable partitions
@article{SEMR_2016_13_a67,
     author = {A. V. Khalyavin and M. S. Lobanov and Yu. V. Tarannikov},
     title = {On plateaued {Boolean} functions with the same spectrum support},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1346--1368},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a67/}
}
TY  - JOUR
AU  - A. V. Khalyavin
AU  - M. S. Lobanov
AU  - Yu. V. Tarannikov
TI  - On plateaued Boolean functions with the same spectrum support
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1346
EP  - 1368
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a67/
LA  - en
ID  - SEMR_2016_13_a67
ER  - 
%0 Journal Article
%A A. V. Khalyavin
%A M. S. Lobanov
%A Yu. V. Tarannikov
%T On plateaued Boolean functions with the same spectrum support
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1346-1368
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a67/
%G en
%F SEMR_2016_13_a67
A. V. Khalyavin; M. S. Lobanov; Yu. V. Tarannikov. On plateaued Boolean functions with the same spectrum support. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1346-1368. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a67/

[1] S. Bhasin, C. Carlet, S. Guilley, Theory of masking with codewords in hardware: low-weight $d$th-order correlation-immune Boolean functions, ePrint IACR Archive Report 2013/303, http://eprint.iacr.org/2013/303

[2] A. Braeken, Y. Borissov, S. Nikova, B. Preneel, “Classification of cubic $(n-4)$-resilient Boolean functions”, IEEE Trans. Inf. Theory, 52:4 (2006), 1670–1676 | DOI | MR | Zbl

[3] C. Carlet, “Boolean functions for cryptography and error correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama, P. L. Hammer, Cambridge University Press, Cambridge, 2010, 257–397 | DOI | MR | Zbl

[4] C. Carlet, P. Charpin, “Cubic Boolean functions with highest resiliency”, IEEE Trans. Inf. Theory, 51:2 (2005), 562–571 | DOI | MR | Zbl

[5] C. Carlet, S. Mesnager, “Four decades of research on bent functions”, Des. Codes Cryptography, 78:1 (2016), 5–50 | DOI | MR | Zbl

[6] C. Carlet, Yu. Tarannikov, “Covering sequences of Boolean functions and their cryptographic significance”, Des. Codes Cryptography, 25:3 (2002), 263–279 | DOI | MR | Zbl

[7] B. Courteau, A. Monpetit, “Dual distances of completely regular codes”, Discrete Math., 89:1 (1991), 7–15 | DOI | MR | Zbl

[8] Ph. Delsarte, “Four fundamental parameters of a code and their combinatorial significance”, Inform. and Control, 23:5 (1973), 407–438 | DOI | MR | Zbl

[9] D. G. Fon-Der-Flaass, “A bound on correlation immunity”, Siberian Electronic Mathematical Reports, 4 (2007), 133–135 http://semr.math.nsc.ru/v4/p133-135.pdf | MR | Zbl

[10] D. G. Fon-Der-Flaass, “Perfect colorings of the $12$-cube that attain the bound on correlation immunity”, Siberian Electronic Mathematical Reports, 4 (2007), 292–295, English abstract (Russian) ; arXiv: 1403.8091 | MR | Zbl

[11] X. Guo-Zhen, J. L. Massey, “A spectral characterization of correlation-immune combining functions”, IEEE Trans. Inf. Theory, 34:3 (1988), 569–571 | DOI | MR | Zbl

[12] Vest. Mosk. Univ. Mat. Mekh., 65:3 (2010), 49–51 | DOI | MR | Zbl

[13] A. V. Khalyavin, “The construction of $4$th order correlation-immune Boolean functions of $9$ variables with nonlinearity $240$”, Proc. $X$th Int. Seminar “Discrete Mathematics and Its Applications” (Moscow, 1–6 February, 2010), Izdatel'stvo mekhaniko-matematicheskogo fakul'teta MGU, M., 2010, 534–537 (Russian)

[14] A. V. Khalyavin, “Upper bounds on nonlinearity of correlation immune Boolean functions”, Prikladnaja Diskretnaja Matematika, 11:1 (2011), 34–69 (Russian)

[15] D. Kirienko, “On new infinite family of high order correlation immune unbalanced Boolean functions”, Proc. 2002 IEEE International Symposium on Information Theory, ISIT 2002 (Lausanne, Switzerland, June 30–July 5, 2002), Piscataway, NJ, 2002, 465–465 | DOI

[16] P. Langevin, G. Leander, “Counting all bent functions in dimension eight $99270589265934370305785861242880$”, Des. Codes Cryptography, 59:1–3 (2011), 193–205 | DOI | MR | Zbl

[17] Diskretn. Mat., 22:4 (2010), 20–33 | DOI | MR | Zbl

[18] A. O. Logachev, A. A. Salnikov, V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptography, Translations of Mathematical Monographs, 241, American Mathematical Society, Providence, RI, 2012 | MR | Zbl

[19] D. Pei, W. Qin, “The correlation of a Boolean function with its variables”, Proc. Progress in Cryptology INDOCRYPT 2000, First International Conference in Cryptology (India Calcutta, India, December 10–13, 2000), Lect. Notes Comput. Sci., 1977, Springer, Berlin, 2000, 1–8 | DOI | MR | Zbl

[20] S. Sanyal, Electronic Colloquium on Computational Complexity (ECCC), Revision 1 of Report No 88 (2014), 2014, 9 pp. http://eccc.hpi-web.de/report/2014/088/ | MR

[21] S. Sanyal, “Near-optimal upper bound on Fourier dimension of Boolean functions in terms of Fourier sparsity”, Automata, Languages, and Programming, 42nd Int. Colloquium, ICALP 2015, Proceedings (Kyoto, Japan, July 6–10, 2015), v. I, Springer, Berlin, 2015, 1035–1045 | MR | Zbl

[22] H.-U. Simon, “A tight $\Omega(\log\log n)$-bound on the time for parallel RAM's to compute nondegenerated Boolean functions”, Foundations of Computation Theory, Proc. Int. FCT-Conf. (Borgholm, Sweden, August 21–27, 1983), Lect. Notes Comput. Sci., 158, 1983, 439–444 | DOI | Zbl

[23] Yu. V. Tarannikov, On a method for the constructing of cryptographically strong Boolean functions, Preprint No 6, Moscow Lomonosov State University, French–Russian Liapunov Institute of Applied Mathematics and Informatics, M., 1999

[24] Yu. V. Tarannikov, “On resilient Boolean functions with maximal possible nonlinearity”, Proc. Progress in Cryptology — INDOCRYPT 2000, First International Conference in Cryptology (India Calcutta, India, December 10–13, 2000), Lect. Notes Comput. Sci., 1977, Springer, Berlin, 2000, 19–30 | DOI | MR | Zbl

[25] Yu. V. Tarannikov, “On correlation immune and resilient Boolean functions”, Matematicheskie voprosy kibernetiki, 11, ed. O. B. Lupanov, Fizmatlit, M., 2002, 91–148 (Russian) | MR

[26] Diskretn. Mat., 18:3 (2006), 120–137 | DOI | DOI | MR | Zbl

[27] Yu. V. Tarannikov, Combinatorial Properties of Discrete Structures and Applications in Cryptology, Izdatel'stvo MCNMO, M., 2011 (Russian)

[28] Yu. V. Tarannikov, “Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters”, Siberian Electronic Mathematical Reports, 11 (2014), 229–245 http://semr.math.nsc.ru/v11/p229-245.pdf | Zbl

[29] Yu. Tarannikov, D. Kirienko, Spectral analysis of high order correlation immune functions, ePrint IACR Archive Report, 2000/050 http://eprint.iacr.org/2000/050

[30] Yu. Tarannikov, D. Kirienko, “Spectral analysis of high order correlation immune functions”, Proc. 2001 IEEE International Symposium on Information Theory, ISIT 2001 (Washington, USA, June 24–29, 2002), Piscataway, NJ, 2001, 69–69 | DOI

[31] N. Tokareva, Bent Functions: Results and Applications to Cryptography, Elsevier, Amsterdam, 2015 | MR | Zbl

[32] I. Wegener, The Complexity of Boolean Functions, B. G. Teubner, Stuttgart; J. Wiley Sons, Chichester etc., 1987 | MR | Zbl

[33] A. Zverev, “On the structure of the spectrum support of Boolean functions”, Boolean Functions in Cryptology and Information Security, NATO Science for Peace and Security Series, Ser. D: Information and Communication Security, 18, eds. B. Preenel, O. A. Logachev, IOS Press, Amsterdam, 2008, 331–340 | MR | Zbl