On packings of $(n,k)$-products
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 888-896.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $(n, k)$-product (or simply a product), $n\ge 2k$, is the product of $k$ binomials on the set of $n$ variables; the variables in the product are not repeated. The decomposition of a product is the set of $2^k$ monomials of length $k$ appearing after expanding the brackets in this product. The sum of some products is called a packing if after the decomposition of all products in this sum every monomial appears at most once. The length of the sum of products is the number of products in this sum. A packing is called perfect if every possible monomial of length $k$ appears exactly once. The problem of packings is motivated by the construction of Boolean functions with cryptographically important properties. In the paper we give recursive constructions of packings of products (including perfect ones) and the corresponding recurrence bounds on their length. We give necessary conditions on the parameters $n$ and $k$ for the existence of a perfect packing of $(n, k)$-products. We give the complete solution of the problem of the existence of perfect packings of $(n,k)$-products for $k\le 3$. We find the exact value for the maximal length of a packing of $(n, 2)$-products for any $n$.
Keywords: Packings, combinatorial designs, perfect structures, combinatorial constructions, coding theory, Boolean functions, cryptography, nonlinearity, resiliency, maximal possible nonlinearity, bounds.
@article{SEMR_2016_13_a63,
     author = {A. V. Sauskan and Yu. V. Tarannikov},
     title = {On packings of $(n,k)$-products},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {888--896},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a63/}
}
TY  - JOUR
AU  - A. V. Sauskan
AU  - Yu. V. Tarannikov
TI  - On packings of $(n,k)$-products
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 888
EP  - 896
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a63/
LA  - en
ID  - SEMR_2016_13_a63
ER  - 
%0 Journal Article
%A A. V. Sauskan
%A Yu. V. Tarannikov
%T On packings of $(n,k)$-products
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 888-896
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a63/
%G en
%F SEMR_2016_13_a63
A. V. Sauskan; Yu. V. Tarannikov. On packings of $(n,k)$-products. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 888-896. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a63/

[1] Avgustinovich S. V., “Multidimensional permanents in enumeration problems”, Journal of Applied and Industrial Mathematics, 4:1 (2010), 19–20 | DOI | MR

[2] Cameron P. J., “A generalisation of $t$-designs”, Discrete Math., 309:14 (2009), 4835–4842 | DOI | MR | Zbl

[3] Colbourn C. J., Dinitz J. H., The CRC handbook of Combinatorial Designs, 2nd ed., Chapman Hall/CRC, Boca Raton, 2007 | MR | Zbl

[4] Hartman A., “Halving the complete design”, Ann. Discrete Math., 34 (1987), 207–224 | MR | Zbl

[5] Tarannikov Y. V., “Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters”, Siberian Electronic Mathematical Reports, 11 (2014), 229–245 http://semr.math.nsc.ru/v11/p229-245.pdf | Zbl

[6] Agahanov N. H., Bogdanov I. I., Kozhevnikov P. A., Podlipskij O. K., Tereshin D. A., “Problem 447”, Vserossijskie olimpiady shkol'nikov po matematike 1993–2006: Okruzhnoj i final'nyj jetapy, ed. N. H. Agahanov, MCNMO, M., 2007, 58; 276–277 (in Russian)

[7] Tarannikov Yu. V., “Nesokratimye razlozhenija odnorodnyh proizvedenij dvuchlenov dlja postroenija $m$-ustojchivyh funkcij s maksimal'no vozmozhnoj nelinejnost'ju”, Problemy teoreticheskoj kibernetiki, Materialy XII mezhdunarodnoj konferencii (Kazan, 16–20 June 2014), Otechestvo, Kazan', 2014, 271–272 (in Russian)

[8] Tarannikov Yu. V., “O vozmozhnosti postroenija $m$-ustojchivyh funkcij s optimal'noj nelinejnost'ju v ramkah odnogo metoda”, Diskretnaja matematika i ee prilozhenija, Materialy XII Mezhdunarodnogo seminara imeni akademika O. B. Lupanova (Moscow, MSU, 20–25 June 2016), Izd-vo mehaniko-matematicheskogo fakul'teta MSU, M., 2016, 394–397 (in Russian)