On a class of perfect codes with maximum components
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 645-655

Voir la notice de l'article provenant de la source Math-Net.Ru

We show the existence of a wide class of binary extended perfect Solov'eva codes of length 16 with $ij$-components of maximum size.
Keywords: perfect binary codes, component.
@article{SEMR_2016_13_a62,
     author = {I. Yu. Mogilnykh and F. I. Solov'eva},
     title = {On a class of perfect codes with maximum components},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {645--655},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a62/}
}
TY  - JOUR
AU  - I. Yu. Mogilnykh
AU  - F. I. Solov'eva
TI  - On a class of perfect codes with maximum components
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 645
EP  - 655
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a62/
LA  - ru
ID  - SEMR_2016_13_a62
ER  - 
%0 Journal Article
%A I. Yu. Mogilnykh
%A F. I. Solov'eva
%T On a class of perfect codes with maximum components
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 645-655
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a62/
%G ru
%F SEMR_2016_13_a62
I. Yu. Mogilnykh; F. I. Solov'eva. On a class of perfect codes with maximum components. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 645-655. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a62/