Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree~$5$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 584-591

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue gave an approximate description of the neighborhoods of $5$-vertices in the class $\mathbf{P}_5$ of $3$-polytopes with minimum degree $5$. Given a $3$-polytope $P$, by $w(P)$ ($h(P)$) we denote the minimum degree-sum (minimum of the maximum degrees) of the neighborhoods of $5$-vertices in $P$. A $5^*$-vertex is a $5$-vertex adjacent to four $5$-vertices. It is known that if a polytope $P$ in $\mathbf{P}_5$ has a $5^*$-vertex, then $h(P)$ can be arbitrarily large. For each $P$ without vertices of degrees from $6$ to $9$ and $5^*$-vertices in $\mathbf{P}_5$, it follows from Lebesgue's Theorem that $w(P)\le 44$ and $h(P)\le 14$. In this paper, we prove that every such polytope $P$ satisfies $w(P)\le 42$ and $h(P)\le 12$, where both bounds are tight.
Keywords: planar map, planar graph, $3$-polytope, structural properties, height, weight.
@article{SEMR_2016_13_a61,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree~$5$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {584--591},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a61/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree~$5$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 584
EP  - 591
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a61/
LA  - en
ID  - SEMR_2016_13_a61
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree~$5$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 584-591
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a61/
%G en
%F SEMR_2016_13_a61
O. V. Borodin; A. O. Ivanova. Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree~$5$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 584-591. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a61/