Structure of the diversity vector of balls of a typical graph with given diameter
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 375-387

Voir la notice de l'article provenant de la source Math-Net.Ru

For labeled $n$-vertex graphs with fixed diameter $d\geq 1$, the diversity vectors of balls (the ith component of the vector is equal to the number of different balls of radius $i$) are studied asymptotically. An explicit description of the diversity vector of balls of a typical graph with given diameter is obtained. A set of integer vectors $\Lambda_{n,d}$ consisting of $\lfloor\frac{d-1}{2}\rfloor$ different vectors for $d\geq 5$ and a unique vector for $d5$ is found. It is proved that almost all labeled $n$-vertex graphs of diameter $d$ have the diversity vector of balls belonging to $\Lambda_ {n,d}$. It is established that this property is not valid after removing any vector from $\Lambda_ {n,d}$. A number of properties of a typical graph of diameter $d$ is proved. In particular, it is obtained that such a graph for $d\geq 3$ does not possess the local $2$-diversity of balls and at the same time has the local $1$-diversity of balls, but has the full diversity of balls if $d=1,2$.
Keywords: graph, labeled graph, metric ball, number of balls, diversity vector of balls, typical graph.
Mots-clés : distance
@article{SEMR_2016_13_a60,
     author = {T. I. Fedoryaeva},
     title = {Structure of the diversity vector of balls of a typical graph with given diameter},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {375--387},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/}
}
TY  - JOUR
AU  - T. I. Fedoryaeva
TI  - Structure of the diversity vector of balls of a typical graph with given diameter
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 375
EP  - 387
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/
LA  - ru
ID  - SEMR_2016_13_a60
ER  - 
%0 Journal Article
%A T. I. Fedoryaeva
%T Structure of the diversity vector of balls of a typical graph with given diameter
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 375-387
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/
%G ru
%F SEMR_2016_13_a60
T. I. Fedoryaeva. Structure of the diversity vector of balls of a typical graph with given diameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 375-387. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/