Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a60, author = {T. I. Fedoryaeva}, title = {Structure of the diversity vector of balls of a typical graph with given diameter}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {375--387}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/} }
TY - JOUR AU - T. I. Fedoryaeva TI - Structure of the diversity vector of balls of a typical graph with given diameter JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 375 EP - 387 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/ LA - ru ID - SEMR_2016_13_a60 ER -
T. I. Fedoryaeva. Structure of the diversity vector of balls of a typical graph with given diameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 375-387. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a60/
[1] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lectures on Graph Theory, B. I. Wissenschaftsverlag, Mannheim, 1994
[2] A. A. Evdokimov, “Locally isometric embeddings of graphs and the metric prolongation property”, Discrete Anal. and Oper. Research, 1 (1995), 7–14; Sibirsk. Zhur. Issled. Oper., 1:1 (1994), 5–12 | MR | Zbl
[3] A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, J. Appl. Ind. Math., 8:2 (2014), 190–195 | DOI | MR | Zbl
[4] T. I. Fedoryaeva, “Operations and isometric embeddings of graphs related to the metric prolongation property”, Oper. Research and Discrete Anal., 2:3 (1997), 31–49 ; Diskretn. Anal. Issled. Oper., 2:3 (1995), 49–67 | DOI | MR
[5] T. I. Fedoryaeva, “On the diversity of metrical balls in graphs”, Abstracts of XIV the Intern. Conference, Publ. MSU, 2005, 159 http://new.math.msu.su/department/dm/dmmc/CONF/14k_tez.pdf
[6] T. I. Fedoryaeva, “Diversity of balls in the metric spaces of trees”, Diskretn. Anal. Issled. Oper., 12:3 (2005), 74–84 | MR | Zbl
[7] T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, J. Appl. Ind. Math., 2:3 (2008), 341–357 ; Diskretn. Anal. Issled. Oper., 14:2 (2007), 47–67 | DOI | MR | Zbl
[8] T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius in graphs with fixed number of vertices and diameter”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 74–92 | MR | Zbl
[9] T. I. Fedoryaeva, “On the graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Ind. Math., 5:1 (2011), 44–50 ; Diskretn. Anal. Issled. Oper., 17:1 (2010), 65–74 | DOI | MR | Zbl
[10] T. I. Fedoryaeva, “Diversity of balls in graphs with fixed number of vertices and diameter”, Probl. of Theoret. Cybern., Publ. NNSU, N. Novgorod, 2011, 491–495
[11] T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, J. Appl. Ind. Math., 7:2 (2013), 153–165 | DOI | MR | Zbl
[12] T. I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54 | DOI | MR
[13] T. I. Fedoryaeva, “On the diversity of balls of a typical graph with given diameter”, Appl. Discrete Math., 8 (2015), 127–128 | DOI
[14] T. I. Fedoryaeva, “Computing the diversity vectors of balls of a given graph”, Siber. Electr. Math. Reports, 13 (2016), 122–129 | DOI
[15] T. I. Fedoryaeva, “Asymptotic approximation for the number of $n$-vertex graphs with given diameter”, Abstracts of Intern. Conference and PhD-Master Sum. School on Graphs and Groups, Spectra and Symmetries, Novosibirsk, 2016 (to appear)
[16] Z. Füredi, Y. Kim, The number of graphs of given diameter, 2012, arXiv: 1204.4580v1 [math.CO]
[17] F. Harary, Graph Theory, Addison-Wesley, London, 1969 | MR | Zbl
[18] K. L. Rychkov, “Sufficient conditions for the existence of a graph with a given variety of balls”, J. Appl. Ind. Math., 1:3 (2007), 380–385 ; Diskretn. Anal. Issled. Oper., 13:1 (2006), 99–108 | DOI | MR | MR | Zbl
[19] K. L. Rychkov, “Conditions for the existence of a graph with given diameter, connectivity, and ball diversity vector”, J. Appl. Ind. Math., 3:1 (2009), 107–116 ; Diskretn. Anal. Issled. Oper., 14:4 (2007), 43–56 | DOI | MR | MR | Zbl