About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 331-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(s, s - 1, s - k)$ is chromatically unique if $k\geq 1$ and $s - k\geq 2$.
Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
@article{SEMR_2016_13_a59,
     author = {P. A. Gein},
     title = {About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {331--337},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/}
}
TY  - JOUR
AU  - P. A. Gein
TI  - About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 331
EP  - 337
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/
LA  - ru
ID  - SEMR_2016_13_a59
ER  - 
%0 Journal Article
%A P. A. Gein
%T About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 331-337
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/
%G ru
%F SEMR_2016_13_a59
P. A. Gein. About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 331-337. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/

[1] M. O. Asanov, V. A. Baranskii, V. V. Rasin, Discrete Mathematics: Graphs, Matroids, Algorithms, Publ. Lan', 2010 (in Russian)

[2] E. J. Farrell, “On chromatic coefficients”, Discrete Math., 29 (1980), 257–264 | MR | Zbl

[3] V. A. Baranskii, S. V. Viharev, “On the chromatic invariants of bipartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh., 36:7 (2005), 25–34 | MR | Zbl

[4] V. A. Baranskii, T. A. Koroleva, “Chromatic uniqueness of certain complete tripartie graphs”, Izv. Ural. Gos. Univ. Mat. Mekh., 74:12 (2010), 5–26 | MR | Zbl

[5] H. Zhao, Chromaticity and adjoint polynomials of graphs, Wöhrmann Print Service, Zutphen, 2005 | MR

[6] F. M. Dong, K. M. Koh, K. L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific, 2005 | MR | Zbl

[7] K. M. Koh, K. L. Teo, “The search of chromatically unique graphs”, Graphs Combin., 6 (1990), 259–285 | MR | Zbl

[8] R. Liu, H. Zhao, C. Ye, “A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs”, Discrete Mathematics, 289 (2004), 175–179 | MR | Zbl

[9] G. L. Chia, Chee-Kit Ho, “Chromatic equivalence classes of some families of complete tripartite graphs”, Bulletin of the Malaysian Mathematical Sciences Society, 37:3 (2014), 641–646 | MR | Zbl

[10] T. Brylawski, “The lattice of integer partitions”, Dicrete Mathematics, 6 (1973), 210–219 | MR | Zbl

[11] V. A. Baransky, T. A. Koroleva, “The Lattice of Partitions of a Positive Integer”, Doklady Akademii Nauk, 418:4 (2008), 439–442 | MR | Zbl

[12] Zhao H. et al., “On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs”, Discrete mathematics, 281:1 (2004), 277–294 | MR | Zbl

[13] V. A. Baranskii, T. A. Sen'chonok, “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proceedings of the Steklov Institute of Mathematics, 279, suppl. 1 (2012), 1–16 | MR

[14] G. L. Chia, Chee-Kit Ho, “Chromatic equivalence classes of complete tripartite graphs”, Discrete Mathematics, 309 (2009), 134–143 | MR | Zbl