Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a59, author = {P. A. Gein}, title = {About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {331--337}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/} }
TY - JOUR AU - P. A. Gein TI - About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 331 EP - 337 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/ LA - ru ID - SEMR_2016_13_a59 ER -
%0 Journal Article %A P. A. Gein %T About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 331-337 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/ %G ru %F SEMR_2016_13_a59
P. A. Gein. About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 331-337. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/