About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 331-337

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(s, s - 1, s - k)$ is chromatically unique if $k\geq 1$ and $s - k\geq 2$.
Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
@article{SEMR_2016_13_a59,
     author = {P. A. Gein},
     title = {About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {331--337},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/}
}
TY  - JOUR
AU  - P. A. Gein
TI  - About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 331
EP  - 337
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/
LA  - ru
ID  - SEMR_2016_13_a59
ER  - 
%0 Journal Article
%A P. A. Gein
%T About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 331-337
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/
%G ru
%F SEMR_2016_13_a59
P. A. Gein. About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 331-337. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/