Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a59, author = {P. A. Gein}, title = {About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {331--337}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/} }
TY - JOUR AU - P. A. Gein TI - About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 331 EP - 337 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/ LA - ru ID - SEMR_2016_13_a59 ER -
%0 Journal Article %A P. A. Gein %T About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 331-337 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/ %G ru %F SEMR_2016_13_a59
P. A. Gein. About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 331-337. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a59/
[1] M. O. Asanov, V. A. Baranskii, V. V. Rasin, Discrete Mathematics: Graphs, Matroids, Algorithms, Publ. Lan', 2010 (in Russian)
[2] E. J. Farrell, “On chromatic coefficients”, Discrete Math., 29 (1980), 257–264 | MR | Zbl
[3] V. A. Baranskii, S. V. Viharev, “On the chromatic invariants of bipartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh., 36:7 (2005), 25–34 | MR | Zbl
[4] V. A. Baranskii, T. A. Koroleva, “Chromatic uniqueness of certain complete tripartie graphs”, Izv. Ural. Gos. Univ. Mat. Mekh., 74:12 (2010), 5–26 | MR | Zbl
[5] H. Zhao, Chromaticity and adjoint polynomials of graphs, Wöhrmann Print Service, Zutphen, 2005 | MR
[6] F. M. Dong, K. M. Koh, K. L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific, 2005 | MR | Zbl
[7] K. M. Koh, K. L. Teo, “The search of chromatically unique graphs”, Graphs Combin., 6 (1990), 259–285 | MR | Zbl
[8] R. Liu, H. Zhao, C. Ye, “A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs”, Discrete Mathematics, 289 (2004), 175–179 | MR | Zbl
[9] G. L. Chia, Chee-Kit Ho, “Chromatic equivalence classes of some families of complete tripartite graphs”, Bulletin of the Malaysian Mathematical Sciences Society, 37:3 (2014), 641–646 | MR | Zbl
[10] T. Brylawski, “The lattice of integer partitions”, Dicrete Mathematics, 6 (1973), 210–219 | MR | Zbl
[11] V. A. Baransky, T. A. Koroleva, “The Lattice of Partitions of a Positive Integer”, Doklady Akademii Nauk, 418:4 (2008), 439–442 | MR | Zbl
[12] Zhao H. et al., “On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs”, Discrete mathematics, 281:1 (2004), 277–294 | MR | Zbl
[13] V. A. Baranskii, T. A. Sen'chonok, “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proceedings of the Steklov Institute of Mathematics, 279, suppl. 1 (2012), 1–16 | MR
[14] G. L. Chia, Chee-Kit Ho, “Chromatic equivalence classes of complete tripartite graphs”, Discrete Mathematics, 309 (2009), 134–143 | MR | Zbl