On enumeration of posets defined on finite set
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 318-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $T_0(n)$ is the number of partial orders (labeled $T_0$-topologies) defined on a finite set of $n$ elements then the formula hold $$ T_0(n)=\sum\limits_{p_1+\ldots+p_k=n} (-1)^{n-k}\,\frac{n!}{p_1!\ldots p_k!}\,W(p_1,\ldots,p_k), $$ where the summation is over all ordered sets $(p_1,\ldots,p_k)$ of positive integers such that $p_1+\ldots+p_k=n$. The number $W(p_1,\ldots,p_k)$ is the number of partial orders of a special form. If $D_k$ is the dihedral group of order $2k$ then $W(p_{\pi(1)},\ldots,p_{\pi(k)})=W(p_1,\ldots,p_k)$ for all $\pi\in D_k$. We studied the complemented partial orders.
Keywords: graph enumeration, poset, finite topology.
@article{SEMR_2016_13_a58,
     author = {V. I. Rodionov},
     title = {On enumeration of posets defined on finite set},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {318--330},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On enumeration of posets defined on finite set
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 318
EP  - 330
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/
LA  - ru
ID  - SEMR_2016_13_a58
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On enumeration of posets defined on finite set
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 318-330
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/
%G ru
%F SEMR_2016_13_a58
V. I. Rodionov. On enumeration of posets defined on finite set. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 318-330. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/

[1] Kh. Sh. Al' Dzhabri, V. I. Rodionov, “The graph of partial orders”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 4 (2013), 3–12 | Zbl

[2] Kh. Sh. Al' Dzhabri, “The graph of reflexive-transitive relations and the graph of finite topologies”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 25:1 (2015), 3–11 | Zbl

[3] Kh. Sh. Al' Dzhabri, V. I. Rodionov, “The graph of acyclic digraphs”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 25:4 (2015), 441–452

[4] L. Comtet, “Recouvrements, bases de filtre et topologies d'un ensemble fini”, C. R. Acad. Sci., 262 (1966), A1091–A1094 | MR

[5] J. W. Evans, F. Harary, M. S. Lynn, “On the computer enumeration of finite topologies”, Comm. ACM, 10:5 (1967), 295–297 | Zbl

[6] H. Gupta, “Number of topologies on a finite set”, Res. Bull. Panjab. Univ. (N.S.), 19 (1968), 231–241 | MR | Zbl

[7] M. Erne, “Struktur- und anzahlformeln fur topologien auf endlichen mengen”, Manuscripta Math., 11 (1974), 221–259 | MR | Zbl

[8] Z. I. Borevich, “Enumeration of finite topologies”, J. Sov. Math., 20:6 (1982), 2532–2545 | MR | Zbl

[9] Z. I. Borevich, W. Wieslaw, E. Dobrowolski, V. I. Rodionov, “The number of labeled topologies on nine points”, J. Sov. Math., 37:2 (1987), 937–942 | MR | Zbl

[10] Z. I. Borevich, V. V. Bumagin, V. I. Rodionov, “Number of labeled topologies on ten points”, J. Sov. Math., 17:4 (1981), 1941–1945 | MR | Zbl

[11] V. I. Rodionov, “A relation in finite topologies”, J. Sov. Math., 24:4 (1984), 458–460 | MR | Zbl

[12] V. I. Rodionov, “Some recurrence relations in finite topologies”, J. Sov. Math., 27:4 (1984), 2963–2968 | MR | Zbl

[13] V. I. Rodionov, “On the number of labeled acyclic digraphs”, Discrete Mathematics, 105 (1992), 319–321 | MR | Zbl

[14] V. Krishnamurthy, “On the number of topologies on a finite set”, Amer. Math. Monthly, 73:2 (1966), 154–157 | MR | Zbl

[15] G. Brinkmann, B. D. McKay, “Posets on up to 16 points”, Order, 19:2 (2002), 147–179 | MR | Zbl

[16] R. W. Robinson, “Counting labeled acyclic digraphs”, New directions in the theory of graphs, Proc. Third Ann Arbor Conference on Graph Theory (1971), 239–273 | MR | Zbl

[17] R. P. Stanley, “Acyclic orientations of graphs”, Discrete Mathematics, 5 (1973), 171–178 | MR | Zbl

[18] V. A. Liscovec, “On the number of maximal vertices of a random acyclic digraph”, Theory Probab. Appl., 20:2 (1976), 401–409 | MR | Zbl