On enumeration of posets defined on finite set
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 318-330

Voir la notice de l'article provenant de la source Math-Net.Ru

If $T_0(n)$ is the number of partial orders (labeled $T_0$-topologies) defined on a finite set of $n$ elements then the formula hold $$ T_0(n)=\sum\limits_{p_1+\ldots+p_k=n} (-1)^{n-k}\,\frac{n!}{p_1!\ldots p_k!}\,W(p_1,\ldots,p_k), $$ where the summation is over all ordered sets $(p_1,\ldots,p_k)$ of positive integers such that $p_1+\ldots+p_k=n$. The number $W(p_1,\ldots,p_k)$ is the number of partial orders of a special form. If $D_k$ is the dihedral group of order $2k$ then $W(p_{\pi(1)},\ldots,p_{\pi(k)})=W(p_1,\ldots,p_k)$ for all $\pi\in D_k$. We studied the complemented partial orders.
Keywords: graph enumeration, poset, finite topology.
@article{SEMR_2016_13_a58,
     author = {V. I. Rodionov},
     title = {On enumeration of posets defined on finite set},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {318--330},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On enumeration of posets defined on finite set
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 318
EP  - 330
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/
LA  - ru
ID  - SEMR_2016_13_a58
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On enumeration of posets defined on finite set
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 318-330
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/
%G ru
%F SEMR_2016_13_a58
V. I. Rodionov. On enumeration of posets defined on finite set. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 318-330. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a58/