Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a57, author = {Alexey N. Medvedev}, title = {The number of small cycles in the {Star} graph}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {286--299}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a57/} }
Alexey N. Medvedev. The number of small cycles in the Star graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 286-299. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a57/
[1] S. B. Akers, B. Krishnamurthy, “The star graph: an attractive alternative to n-cube”, Proceedings of International Conference on Parallel Processing, ICPP-87 (St. Charles, Illinois, August 1987), 393–400
[2] L. Wang, S. Subramanian, S. Latifi, P. K. Srimani, “Distance distribution of nodes in star graphs”, Applied Mathematics Letters, 19:8 (2006), 780–784 | MR | Zbl
[3] E. V. Konstantinova, A. N. Medvedev, “Small cycles in the Star graph”, Siberian Electronic Mathematical Reports, 11 (2014), 906–914 http://semr.math.nsc.ru/v11/p906-914.pdf | Zbl
[4] S. B. Akers, B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks”, IEEE Trans. Comput., 38:4 (1989), 555–566 | MR | Zbl
[5] J. S. Jwo, S. Lakshmivarahan, S. K. Dhall, “Embedding of cycles and grids in star graphs”, J. Circuits, Syst., Comput., 1:1 (1991), 43–74
[6] V. L. Kompel'makher, V. A. Liskovets, “Successive generation of permutations by means of a transposition basis”, Kibernetika, 3 (1975), 17–21 (in Russian) | MR | Zbl
[7] P. J. Slater, “Generating all permutations by graphical transpositions”, Ars Combinatoria, 5 (1978), 219–225 | MR | Zbl
[8] N. Alon, R. Yuster, U. Zwick, “Finding and counting given length cycles”, Algorithmica, 17:3 (1997), 209–223 | MR | Zbl
[9] J. A. Bondy, M. Siminovits, “Cycles of even length in graphs”, Journal of Combinatorial Theory B, 16 (1974), 97–105 | MR | Zbl
[10] J. A. Fill, R. Pemantle, “Percolation, First-passage Percolation and Covering Times for Richardson's Model on the N-cube”, The Annals of Applied Probability, 3:2 (1993), 593–629 | MR | Zbl
[11] E. V. Konstantinova, A. N. Medvedev, “Cycles of length seven in the Pancake graph”, Diskretn. Anal. Issled. Oper., 17:5 (2010), 46–55 (in Russian) | MR | Zbl
[12] E. V. Konstantinova, A. N. Medvedev, “Cycles of length nine in the Pancake graph”, Diskretn. Anal. Issled. Oper., 18:6 (2011), 33–60 (in Russian) | MR | Zbl
[13] E. Konstantinova, A. Medvedev, “Small cycles in the Pancake graph”, Ars Mathematica Contemporanea, 7 (2014), 237–246 | MR | Zbl