The number of small cycles in the Star graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 286-299

Voir la notice de l'article provenant de la source Math-Net.Ru

The Star graph is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(1\,i) \in Sym_n: 2 \leqslant i \leqslant n\}$. This graph is bipartite and does not contain odd cycles but contains all even cycles with a sole exception of $4$-cycles. We denote as $(\pi,id)$-cycles the cycles constructed from two shortest paths between a given vertex $\pi$ and the identity $id$. In this paper we derive the exact number of $(\pi,id)$-cycles for particular structures of the vertex $\pi$. We use these results to obtain the total number of $10$-cycles passing through any given vertex in the Star graph.
Keywords: Cayley graphs; Star graph; cycle embedding; number of cycles.
@article{SEMR_2016_13_a57,
     author = {Alexey N. Medvedev},
     title = {The number of small cycles in the {Star} graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {286--299},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a57/}
}
TY  - JOUR
AU  - Alexey N. Medvedev
TI  - The number of small cycles in the Star graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 286
EP  - 299
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a57/
LA  - en
ID  - SEMR_2016_13_a57
ER  - 
%0 Journal Article
%A Alexey N. Medvedev
%T The number of small cycles in the Star graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 286-299
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a57/
%G en
%F SEMR_2016_13_a57
Alexey N. Medvedev. The number of small cycles in the Star graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 286-299. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a57/