On discretization of parabolic coordinates
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1159-1169

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a problem of construction of discrete analogues of orthogonal curvilinear coordinate systems in the Euclidean space. In particular we find algebraic-geometric spectral data for discrete analogues of the parabolic coordinate system and the spiral coordinate system.
Keywords: discrete integrability, Baker–Akhiezer function, Darboux–Egoroff lattice, parabolic coordinate system, spiral coordinate system.
@article{SEMR_2016_13_a55,
     author = {E. I. Shamaev},
     title = {On discretization of parabolic coordinates},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1159--1169},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/}
}
TY  - JOUR
AU  - E. I. Shamaev
TI  - On discretization of parabolic coordinates
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1159
EP  - 1169
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/
LA  - ru
ID  - SEMR_2016_13_a55
ER  - 
%0 Journal Article
%A E. I. Shamaev
%T On discretization of parabolic coordinates
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1159-1169
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/
%G ru
%F SEMR_2016_13_a55
E. I. Shamaev. On discretization of parabolic coordinates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1159-1169. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/