On discretization of parabolic coordinates
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1159-1169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a problem of construction of discrete analogues of orthogonal curvilinear coordinate systems in the Euclidean space. In particular we find algebraic-geometric spectral data for discrete analogues of the parabolic coordinate system and the spiral coordinate system.
Keywords: discrete integrability, Baker–Akhiezer function, Darboux–Egoroff lattice, parabolic coordinate system, spiral coordinate system.
@article{SEMR_2016_13_a55,
     author = {E. I. Shamaev},
     title = {On discretization of parabolic coordinates},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1159--1169},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/}
}
TY  - JOUR
AU  - E. I. Shamaev
TI  - On discretization of parabolic coordinates
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1159
EP  - 1169
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/
LA  - ru
ID  - SEMR_2016_13_a55
ER  - 
%0 Journal Article
%A E. I. Shamaev
%T On discretization of parabolic coordinates
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1159-1169
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/
%G ru
%F SEMR_2016_13_a55
E. I. Shamaev. On discretization of parabolic coordinates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1159-1169. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/

[1] Darboux G., Leçons sur le systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl

[2] Tsarev S. P., “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Mathematics of the USSR-Izvestiya: Mathematics, 37:2 (1991), 397–419 | DOI | MR

[3] Dubrovin B., “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, Springer, Berlin, 1995, 120–348 | DOI | MR

[4] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94 (1998), 103–139 | DOI | MR | Zbl

[5] Krichever I. M., “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and the solution of associativity equations”, Funct. Anal. Appl., 31:1 (1997), 25–39 | DOI | MR | Zbl

[6] Mironov A. E., Taimanov I. A., “Orthogonal curvilinear coordinate systems that correspond to singular spectral curves”, Proc. Steklov Inst. Math., 255:4 (2006), 169–184 | DOI | MR | Zbl

[7] Cieśliński J., Doliwa A., Santini P. M., “The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices”, Phys. Lett. A, 235 (1997), 480–488 | DOI | MR | Zbl

[8] Proc. Steklov Inst. Math., 225 (1999), 16–39 | MR | Zbl

[9] Shamaev E. I., “On Darboux–Egorov lattices”, Siberian Electronic Mathematical Reports, 10 (2013), 113–122 | MR | Zbl

[10] Bogoyavlenskaya O. A., “On one family of finite gap curvilinear orthogonal coordinates”, Siberian Electronic Mathematical Reports, 12 (2015), 947–954 | Zbl