Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a55, author = {E. I. Shamaev}, title = {On discretization of parabolic coordinates}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1159--1169}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/} }
E. I. Shamaev. On discretization of parabolic coordinates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1159-1169. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a55/
[1] Darboux G., Leçons sur le systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910 | Zbl
[2] Tsarev S. P., “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Mathematics of the USSR-Izvestiya: Mathematics, 37:2 (1991), 397–419 | DOI | MR
[3] Dubrovin B., “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, Springer, Berlin, 1995, 120–348 | DOI | MR
[4] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94 (1998), 103–139 | DOI | MR | Zbl
[5] Krichever I. M., “Algebraic-geometric $n$-orthogonal curvilinear coordinate systems and the solution of associativity equations”, Funct. Anal. Appl., 31:1 (1997), 25–39 | DOI | MR | Zbl
[6] Mironov A. E., Taimanov I. A., “Orthogonal curvilinear coordinate systems that correspond to singular spectral curves”, Proc. Steklov Inst. Math., 255:4 (2006), 169–184 | DOI | MR | Zbl
[7] Cieśliński J., Doliwa A., Santini P. M., “The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices”, Phys. Lett. A, 235 (1997), 480–488 | DOI | MR | Zbl
[8] Proc. Steklov Inst. Math., 225 (1999), 16–39 | MR | Zbl
[9] Shamaev E. I., “On Darboux–Egorov lattices”, Siberian Electronic Mathematical Reports, 10 (2013), 113–122 | MR | Zbl
[10] Bogoyavlenskaya O. A., “On one family of finite gap curvilinear orthogonal coordinates”, Siberian Electronic Mathematical Reports, 12 (2015), 947–954 | Zbl