An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1017-1025

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the volume of the $7_3^2$ link cone-manifolds using the Schläfli formula. As an application, we give the volume of the cyclic coverings branched over the link.
Keywords: hyperbolic orbifold, hyperbolic cone-manifold, link $7_3^2$, orbifold covering, Riley–Mednykh polynomial.
Mots-clés : volume
@article{SEMR_2016_13_a53,
     author = {Ji-Young Ham and J. Lee and A. Mednykh and A. Rasskazov},
     title = {An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1017--1025},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/}
}
TY  - JOUR
AU  - Ji-Young Ham
AU  - J. Lee
AU  - A. Mednykh
AU  - A. Rasskazov
TI  - An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1017
EP  - 1025
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/
LA  - en
ID  - SEMR_2016_13_a53
ER  - 
%0 Journal Article
%A Ji-Young Ham
%A J. Lee
%A A. Mednykh
%A A. Rasskazov
%T An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1017-1025
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/
%G en
%F SEMR_2016_13_a53
Ji-Young Ham; J. Lee; A. Mednykh; A. Rasskazov. An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1017-1025. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/