Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a53, author = {Ji-Young Ham and J. Lee and A. Mednykh and A. Rasskazov}, title = {An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1017--1025}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/} }
TY - JOUR AU - Ji-Young Ham AU - J. Lee AU - A. Mednykh AU - A. Rasskazov TI - An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 1017 EP - 1025 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/ LA - en ID - SEMR_2016_13_a53 ER -
%0 Journal Article %A Ji-Young Ham %A J. Lee %A A. Mednykh %A A. Rasskazov %T An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 1017-1025 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/ %G en %F SEMR_2016_13_a53
Ji-Young Ham; J. Lee; A. Mednykh; A. Rasskazov. An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1017-1025. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a53/
[1] D. Cooper, C. D. Hodgson, S. P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, 5, Mathematical Society of Japan, Tokyo, 2000 | MR | Zbl
[2] D. Derevnin, A. Mednykh, M. Mulazzani, “Volumes for twist link cone-manifolds”, Bol. Soc. Mat. Mexicana III, Ser. 10, 2004, Special Issue, 129–145 | MR | Zbl
[3] W. Fenchel, Elementary geometry in hyperbolic space, de Gruyter Studies in Mathematics, 11, Walter de Gruyter Co., Berlin, 1989 | MR | Zbl
[4] J.-Y. Ham, J. Lee, Explicit formulae for Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation ${C}(2n,3)$, Preprint, , 2016 http://www.math.snu.ac.kr/ ̃ jyham | MR
[5] J.-Y. Ham, J. Lee, “Explicit formulae for Chern–Simons invariants of the twist knot orbifolds and edge polynomials of twist knots”, Matematicheskii Sbornik, 207:9 (2016)
[6] J.-Y. Ham, J. Lee, “The volume of hyperbolic cone-manifolds of the knot with Conway's notation $C(2n,3)$”, J. Knot Theory Ramifications, 25:6 (2016), 1650030, 9 pp. | DOI | MR | Zbl
[7] J.-Y. Ham, A. Mednykh, V. Petrov, “Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds”, J. Knot Theory Ramifications, 23:12 (2014), 1450064, 16 pp. | DOI | MR | Zbl
[8] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “On a remarkable polyhedron geometrizing the figure eight knot cone manifolds”, J. Math. Sci. Univ. Tokyo, 2:3 (1995), 501–561 | MR | Zbl
[9] H. M. Hilden, M. T. Lozano, J. M. Montesinos-Amilibia, “Volumes and Chern–Simons invariants of cyclic coverings over rational knots”, Topology and Teichmüller spaces (Katinkulta, 1995), World Sci. Publ., River Edge, NJ, 1996, 31–55 | DOI | MR | Zbl
[10] S. Kojima, “Deformations of hyperbolic $3$-cone-manifolds”, J. Differential Geom., 49:3 (1998), 469–516 | MR | Zbl
[11] S. Kojima, “Hyperbolic $3$-manifolds singular along knots”, Chaos Solitons Fractals, 9:4–5, Knot Theory and Its Applications: Expository Articles on Current Research (1998), 765–777 | DOI | MR | Zbl
[12] J. P. Mayberry, K. Murasugi, “Torsion-groups of abelian coverings of links”, Trans. Amer. Math. Soc., 271:1 (1982), 143–173 | DOI | MR | Zbl
[13] A. Mednykh, The volumes of cone-manifolds and polyhedra, Lecture Notes, , Seoul National University, 2007 http://mathlab.snu.ac.kr/t̃op/workshop01.pdf
[14] A. Mednykh, A. Rasskazov, On the structure of the canonical fundamental set for the 2-bridge link orbifolds, Sonderforschungsbereich 343, Discrete Structuren in der Mathematik, Preprint 98-062, , Universität Bielefeld, 1998 http://www.mathematik.uni-bielefeld.de/sfb343/preprints/pr98062.ps.gz
[15] A. Mednykh, A. Rasskazov, “Volumes and degeneration of cone-structures on the figure-eight knot”, Tokyo J. Math., 29:2 (2006), 445–464 | DOI | MR | Zbl
[16] A. Mednykh, A. Vesnin, “On the volume of hyperbolic Whitehead link cone-manifolds”, SCIENTIA, Series A: Sci. Ser. A Math. Sci. (N.S.), 8 (2002), 1–11 | MR | Zbl
[17] A. D. Mednykh, “Trigonometric identities and geometrical inequalities for links and knots”, Proceedings of the Third Asian Mathematical Conference (2000, Diliman), World Sci. Publ., River Edge, NJ, 2002, 352–368 | MR | Zbl
[18] M. Mulazzani, A. Vesnin, “The many faces of cyclic branched coverings of 2-bridge knots and links”, Atti Sem. Mat. Fis. Univ. Modena, 49, suppl. (2001), 177–215 | MR | Zbl
[19] J. Porti, “Spherical cone structures on 2-bridge knots and links”, Kobe J. Math., 21:1–2 (2004), 61–70 | MR | Zbl
[20] J. Porti, H. Weiss, “Deforming Euclidean cone 3-manifolds”, Geom. Topol., 11 (2007), 1507–1538 | DOI | MR | Zbl
[21] R. Riley, “Nonabelian representations of {$2$}-bridge knot groups”, Quart. J. Math. Oxford II, Ser., 35:138 (1984), 191–208 | DOI | MR | Zbl