An interpretation of Casey’s theorem and of its hyperbolic analogue
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 242-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain interpretations of Casey’s theorem and of its hyperbolic version in a pseudo-Euclidean and in a pseudo-hyperbolic spaces.
Keywords: Casey’s theorem, Ptolemy’s theorem, hyperbolic plane
Mots-clés : Laguerre’s transformations.
@article{SEMR_2016_13_a50,
     author = {A. V. Kostin and N. N. Kostina},
     title = {An interpretation of {Casey{\textquoteright}s} theorem and of its hyperbolic analogue},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {242--251},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a50/}
}
TY  - JOUR
AU  - A. V. Kostin
AU  - N. N. Kostina
TI  - An interpretation of Casey’s theorem and of its hyperbolic analogue
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 242
EP  - 251
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a50/
LA  - ru
ID  - SEMR_2016_13_a50
ER  - 
%0 Journal Article
%A A. V. Kostin
%A N. N. Kostina
%T An interpretation of Casey’s theorem and of its hyperbolic analogue
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 242-251
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a50/
%G ru
%F SEMR_2016_13_a50
A. V. Kostin; N. N. Kostina. An interpretation of Casey’s theorem and of its hyperbolic analogue. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 242-251. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a50/

[1] T. Kubota, “On the extended Ptolemy's theorem in hyperbolic geometry”, Science reports of the Tohoku University. Ser. 1: Physics, Chemistry, astronomy, 2 (1912), 131–156

[2] P. A. Shirokov, “Etudes on the Lobachevskii geometry”, Izvestia Fiziko-matematicheskogo obschestva pri KGU, seria 2, 24:1 (1924), 26–32

[3] P. A. Shirokov, Selected papers on the Lobachevskii geometry, Izdatelstvo Kazanskogo Universiteta, Kazan, 1966

[4] J. Casey, A seqyel to the first six books of the Elements of Euclid, containing an easy introduction to modern geometry, with numerous examples, 5th. ed., Hodges, Figgis and Co., Dublin, 1888

[5] N. V. Abrosimov, L. A. Mikaiylova, “Casey's theorem in hyperbolic geometry”, Siberian Electronic Mathematical Reports, 12 (2015), 354–360

[6] I. M. Yaglom, “Somplex numbers and their application to the geometry”, Matematicheskoe prosveschenie, 6 (1961), 60–106

[7] I. M. Yaglom, Geometric transformations, v. II, M., 1956

[8] A. M. Mikenberg, The Laguerre geometry and its analogue, Dissertacii kand. f.-m. nauk, Kazan, 1994

[9] Z. A. Skopets, I. M. Yaglom, Laguerre transformations of the Lobachevskii plane and Möbius transformations of a dual variable. Problems of the differential and non-Euclidean geometries, Izdatelstvo MGPI, M., 1965

[10] B. A. Rosenfeld, Non-Euclidean spaces, Nauka, M., 1969