Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a5, author = {M. V. Dorzhieva}, title = {Undecidability of elementary theory of {Rogers} semilattices in analytical hierarchy}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {148--153}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a5/} }
TY - JOUR AU - M. V. Dorzhieva TI - Undecidability of elementary theory of Rogers semilattices in analytical hierarchy JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 148 EP - 153 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a5/ LA - ru ID - SEMR_2016_13_a5 ER -
M. V. Dorzhieva. Undecidability of elementary theory of Rogers semilattices in analytical hierarchy. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 148-153. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a5/
[1] S. Yu. Podzorov, “Initial segments in Rogers semilattices of $\Sigma_{n}^{0}$-computable numberings”, Algebra and Logic, 42:2 (2003), 211–226 | DOI | MR | Zbl
[2] S. S. Goncharov, A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices”, Algebra and Logic, 36:6 (1997), 621–641 | DOI | MR | Zbl
[3] S. A. Badaev, S. S. Goncharov, “Rogers semilattices of families of arithmetic sets”, Algebra and Logic, 40:5 (2001), 507–522 | DOI | MR | Zbl
[4] S. Badaev, S. Goncharov, S. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer/Plenum Publishers, New York, 2003, 45–77 | DOI | MR
[5] S. Badaev, S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer/Plenum Publishers, New York, 2003, 11–44 | DOI | MR
[6] M. V. Dorzhieva, “Eliminatsiya metarekursii iz teoremy Owinsa”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 14:1 (2014), 35–43
[7] M. V. Dorzhieva, “Odnoznachnaya numeratsiya semeystva vsex $\Sigma_{2}^{1}$-mnozhestv”, Vestnik NGU (to appear)
[8] N. A. Baklanova, “Nerazreshimost' elementarnykh teoriy polureshetok Rodzhersa na predel'nykh urovnyakh arifmeticheskoy ierarkhii”, Vestnik NSU. Seriya: Matematika, mekhanika, informatika, 11:4 (2011), 3–7 | Zbl