@article{SEMR_2016_13_a5,
author = {M. V. Dorzhieva},
title = {Undecidability of elementary theory of {Rogers} semilattices in analytical hierarchy},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {148--153},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a5/}
}
M. V. Dorzhieva. Undecidability of elementary theory of Rogers semilattices in analytical hierarchy. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 148-153. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a5/
[1] S. Yu. Podzorov, “Initial segments in Rogers semilattices of $\Sigma_{n}^{0}$-computable numberings”, Algebra and Logic, 42:2 (2003), 211–226 | DOI | MR | Zbl
[2] S. S. Goncharov, A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices”, Algebra and Logic, 36:6 (1997), 621–641 | DOI | MR | Zbl
[3] S. A. Badaev, S. S. Goncharov, “Rogers semilattices of families of arithmetic sets”, Algebra and Logic, 40:5 (2001), 507–522 | DOI | MR | Zbl
[4] S. Badaev, S. Goncharov, S. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer/Plenum Publishers, New York, 2003, 45–77 | DOI | MR
[5] S. Badaev, S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and Models, eds. S. B. Cooper, S. S. Goncharov, Kluwer/Plenum Publishers, New York, 2003, 11–44 | DOI | MR
[6] M. V. Dorzhieva, “Eliminatsiya metarekursii iz teoremy Owinsa”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 14:1 (2014), 35–43
[7] M. V. Dorzhieva, “Odnoznachnaya numeratsiya semeystva vsex $\Sigma_{2}^{1}$-mnozhestv”, Vestnik NGU (to appear)
[8] N. A. Baklanova, “Nerazreshimost' elementarnykh teoriy polureshetok Rodzhersa na predel'nykh urovnyakh arifmeticheskoy ierarkhii”, Vestnik NSU. Seriya: Matematika, mekhanika, informatika, 11:4 (2011), 3–7 | Zbl