Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a47, author = {M. G. Chebunin}, title = {On ergodic algorithms in systems of multiple access with partial feedback}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {762--781}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a47/} }
M. G. Chebunin. On ergodic algorithms in systems of multiple access with partial feedback. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 762-781. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a47/
[1] M. Bramson, Stability of queueing networks, Lecture Notes in Mathematics, 1950, Springer, Berlin, 2008 | MR | Zbl
[2] S. Meyn, R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, 1993 | MR | Zbl
[3] S. G. Foss, B. Hajek, A. M. Turlikov, “Doubly Randomised Protocols for a Random Multiple Access Channel with «Success-Nonsuccess» Feedback”, Problems of Information Transmission, 52:2 (2016), 60–70 | DOI
[4] V. V. Kalashnikov, Mathematical methods in queuing theory, Springer Science+Business Media, Dordrecht, 1994 | MR
[5] V. V. Kalashnikov, “Estimates of convergence rates and stability for regeneration and renewal Markov processes”, Queueing theory, VNIISI AS USSR, 1981, 7–12
[6] A. A. Borovkov, Probability Theory, Universitext, Springer, London, 2013 | DOI | MR | Zbl
[7] G. Fayolle, E. Gelembe, J. Labetoulle, “Stability and optimal control of the packet switching broadcast channel”, J. of Assoc. Comput. Mach., 24 (1977), 375–386 | DOI | MR | Zbl
[8] G. I. Falin, Random processes in structurally complex queueing systems, Dissertation d.f.-m.s., MSU, M., 1989
[9] B. S. Tsybakov, V. A. Mihajlov, “Free synchronized access in a broadcast channel with a feedback”, Problems of Information Transmission, 14:4 (1978), 32–59 | MR | Zbl
[10] J. L. Capetanakis, “Tree algorithms for packet broadcast channels”, IEEE Transactions on Information Theory, 25:5 (1979), 505–515 | DOI | MR | Zbl
[11] B. Hajek, T. van Loon, “Decentralized dynamic control of a multiaccess broadcast channel”, IEEE Trans. Automatic Control, 27:3 (1982), 559–569 | DOI | Zbl
[12] V. A. Mihajlov, “Geometrical Analysis of the Stability of Markov Chains in ${\mathbf R}^n_+$ and Its Application to Throughput Evaluation of the Adaptive Random Multiple Access Algorithm”, Problems of Information Transmission, 24:1 (1988), 47–56 | MR
[13] N. Mehravari, T. Berger, “Poisson multiple-access contention with binary feedback”, IEEE Transactions on Information Theory, 30:5 (1984), 745–751 | DOI | MR | Zbl
[14] B. Paris, B. Aazhang, “Near-optimum control of multiple-access collision channels”, IEEE Transactions on Wireless Communications, 40 (1992), 1298–1308 | DOI
[15] A. Malkov, A. Turlikov, “Random multiple access protocols for communication systems with «success-failure» feedback”, IEEE International Workshop on Information Theory, 1995, 1–39
[16] B. S. Tsybakov, A. N. Beloyarov, “Random multiple access in a channel with a binary feedback «Success-Failure»”, Problems of Information Transmission, 26:3 (1990), 67–82 | MR | Zbl
[17] B. S. Tsybakov, A. N. Beloyarov, “Random multiple access in a channel with a binary feedback”, Problems of Information Transmission, 26:4 (1990), 83–98 | MR | Zbl
[18] A. Turlikov, S. Foss, “On ergodic algorithms in random multiple access systems with «success-failure» feedback”, Problems of Information Transmission, 46:2 (2010), 185–201 | DOI | MR
[19] S. G. Foss, Stochastic recursive sequences and their applications in Queueing, Dissertation d.f.-m.s., IM SB RAS, Novosibirsk, 1992
[20] D. Aldous, “Ultimate instability of exponential back-off protocol for acknowledgment based transmission control of random access communication channels”, IEEE Transactions on Information Theory, 33:2 (1987), 219–223 | DOI | MR | Zbl
[21] A. Ephremides, B. Hajek, “Information theory and communication networks: An unconsummated union”, IEEE Trans. Inform. Theory, 44:6 (1998), 2416–2434 | DOI | MR | Zbl
[22] S. G. Foss, D. E. Denisov, “On transience conditions for Markov chains”, Sibirsk. Mat. Zh., 42:2 (2001), 425–433 | MR | Zbl