On the number of characters matchings in discrete random sequence controlled by Markov chain
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 305-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to studying the properties of the number of pairs of characters matchings in discrete random sequence controlled by Markov chain with finite number of states. Alongside with the random variable we also consider the number of characters which appears in a random sequence exactly $k$ times, $k=0,1,2$. We derive the estimators for total variation distance between distributions of the considered random variables and Poisson distribution. This results allow to develop Poisson and normal limit theorems.
Keywords: pairs of characters matchings, placing of particles, normal limit theorem.
Mots-clés : Poisson limit theorem
@article{SEMR_2016_13_a45,
     author = {N. M. Mezhennaya},
     title = {On the number of characters matchings in discrete random sequence controlled by {Markov} chain},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {305--317},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
TI  - On the number of characters matchings in discrete random sequence controlled by Markov chain
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 305
EP  - 317
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/
LA  - ru
ID  - SEMR_2016_13_a45
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%T On the number of characters matchings in discrete random sequence controlled by Markov chain
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 305-317
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/
%G ru
%F SEMR_2016_13_a45
N. M. Mezhennaya. On the number of characters matchings in discrete random sequence controlled by Markov chain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 305-317. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/

[1] Yu. A. Rozanov, Stochastic processes. Short course, Nauka, M., 1979, 184 pp. (in Russian)

[2] V. F. Kolchin, B. A. Sevast'yanov, V. P. Chistyakov, Random allocations, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC, 1978, 262 pp. | Zbl

[3] J. Bartroff, L. Goldstein, “A Berry–Esseen bound for the uniform multinomial occupancy model”, Electron. J. Probab., 18 (2013), 1–29 | Zbl

[4] V. G. Mikhailov, “An estimate of the rate of convergence to the Poisson distribution in group placing of particles”, Theory Probab. Appl., 22:3 (1978), 554–562

[5] A. D. Barbour, A. V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14:13 (2009), 365–384 | Zbl

[6] G. Englund, “A remainder term estimate for the normal approximation in classical occupancy”, Ann. Prob., 9:4 (1981), 684–692 | Zbl

[7] H.-K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Prob., 36:3 (2008), 992–1022 | Zbl

[8] P. F. Belyaev, “On the joint frequency distribution of outcomes in Markov chains with large number of states”, Theory Probab. Appl., 22:3 (1977), 521–532 | Zbl

[9] A. M. Zubkov, “Inequalities for transition probabilities with taboos and their applications”, Math. USSR-Sb., 37:4 (1980), 451–488 | Zbl

[10] A. M. Zubkov, V. G. Mikhailov, “Limit distributions of random variables connected with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 | Zbl

[11] V. F. Kolchin, V. P. Chistyakov, “Limit distributions of the number of not appeared s-tuples in a multinomial scheme”, Theory Probab. Appl., 19:4 (1975), 822–830

[12] V. G. Mikhailov, “Limit distributions of random variables connected with multiple long duplications in a sequence lof independent trials”, Theory Probab. Appl., 19:1 (1974), 180–184

[13] A. M. Zubkov, V. G. Mikhailov, “On the accuracy of Poisson approximation in an occupancy problem”, Theory Probab. Appl., 23:4 (1979), 789–794 | Zbl

[14] A. M. Zubkov, V. G. Mikhailov, “On the repetitions of s-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1979), 269–282

[15] L. Goldstein, “Berry Esseen Bounds for Combinatorial Central Limit Theorems and Pattern Occurrences, using Zero and Size Biasing”, Journal of Applied Probability, 42 (2005), 661–683 | Zbl

[16] V. G. Mikhailov, A. M. Shoitov, “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303

[17] V. G. Mikhailov, A. M. Shoitov, “On multiple repetitions of long tuples in a Markov chain”, Mat. Vopr. Kriptogr., 6:3 (2015), 117–133 (in Russian)

[18] V. G. Mikhailov, “On the estimation of the accuracy of Poisson approximation for distribution of number of series of repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 27:4 (2015), 67–78

[19] R. J. Elliott, L. Aggoun, J. B. Moore, Hidden Markov models, Applications of Mathematics, 29, Springer-Verlag, New-York, 1995 | Zbl

[20] A. A. Petushko, “On Markov random fields and their link with Markov chains”, Intellect. systemy. Theory and Appl., 14:1–4 (2010), 225–236 (in Russian)

[21] A. D. Barbour, L. Holst, S. Janson, Poisson Approximation, Oxford Univ. Press, Oxford, 1992 | Zbl

[22] R. Arratia, L. Goldstein, L. Gordon, “Two Moments Suffice for Poisson Approximations: The Chen–Stein Method”, Ann. Prob., 17:1 (1989), 9–25 | Zbl