Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a45, author = {N. M. Mezhennaya}, title = {On the number of characters matchings in discrete random sequence controlled by {Markov} chain}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {305--317}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/} }
TY - JOUR AU - N. M. Mezhennaya TI - On the number of characters matchings in discrete random sequence controlled by Markov chain JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 305 EP - 317 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/ LA - ru ID - SEMR_2016_13_a45 ER -
N. M. Mezhennaya. On the number of characters matchings in discrete random sequence controlled by Markov chain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 305-317. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a45/
[1] Yu. A. Rozanov, Stochastic processes. Short course, Nauka, M., 1979, 184 pp. (in Russian)
[2] V. F. Kolchin, B. A. Sevast'yanov, V. P. Chistyakov, Random allocations, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC, 1978, 262 pp. | Zbl
[3] J. Bartroff, L. Goldstein, “A Berry–Esseen bound for the uniform multinomial occupancy model”, Electron. J. Probab., 18 (2013), 1–29 | Zbl
[4] V. G. Mikhailov, “An estimate of the rate of convergence to the Poisson distribution in group placing of particles”, Theory Probab. Appl., 22:3 (1978), 554–562
[5] A. D. Barbour, A. V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14:13 (2009), 365–384 | Zbl
[6] G. Englund, “A remainder term estimate for the normal approximation in classical occupancy”, Ann. Prob., 9:4 (1981), 684–692 | Zbl
[7] H.-K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Prob., 36:3 (2008), 992–1022 | Zbl
[8] P. F. Belyaev, “On the joint frequency distribution of outcomes in Markov chains with large number of states”, Theory Probab. Appl., 22:3 (1977), 521–532 | Zbl
[9] A. M. Zubkov, “Inequalities for transition probabilities with taboos and their applications”, Math. USSR-Sb., 37:4 (1980), 451–488 | Zbl
[10] A. M. Zubkov, V. G. Mikhailov, “Limit distributions of random variables connected with long duplications in a sequence of independent trials”, Theory Probab. Appl., 19:1 (1974), 172–179 | Zbl
[11] V. F. Kolchin, V. P. Chistyakov, “Limit distributions of the number of not appeared s-tuples in a multinomial scheme”, Theory Probab. Appl., 19:4 (1975), 822–830
[12] V. G. Mikhailov, “Limit distributions of random variables connected with multiple long duplications in a sequence lof independent trials”, Theory Probab. Appl., 19:1 (1974), 180–184
[13] A. M. Zubkov, V. G. Mikhailov, “On the accuracy of Poisson approximation in an occupancy problem”, Theory Probab. Appl., 23:4 (1979), 789–794 | Zbl
[14] A. M. Zubkov, V. G. Mikhailov, “On the repetitions of s-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1979), 269–282
[15] L. Goldstein, “Berry Esseen Bounds for Combinatorial Central Limit Theorems and Pattern Occurrences, using Zero and Size Biasing”, Journal of Applied Probability, 42 (2005), 661–683 | Zbl
[16] V. G. Mikhailov, A. M. Shoitov, “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303
[17] V. G. Mikhailov, A. M. Shoitov, “On multiple repetitions of long tuples in a Markov chain”, Mat. Vopr. Kriptogr., 6:3 (2015), 117–133 (in Russian)
[18] V. G. Mikhailov, “On the estimation of the accuracy of Poisson approximation for distribution of number of series of repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 27:4 (2015), 67–78
[19] R. J. Elliott, L. Aggoun, J. B. Moore, Hidden Markov models, Applications of Mathematics, 29, Springer-Verlag, New-York, 1995 | Zbl
[20] A. A. Petushko, “On Markov random fields and their link with Markov chains”, Intellect. systemy. Theory and Appl., 14:1–4 (2010), 225–236 (in Russian)
[21] A. D. Barbour, L. Holst, S. Janson, Poisson Approximation, Oxford Univ. Press, Oxford, 1992 | Zbl
[22] R. Arratia, L. Goldstein, L. Gordon, “Two Moments Suffice for Poisson Approximations: The Chen–Stein Method”, Ann. Prob., 17:1 (1989), 9–25 | Zbl