Stability and instability of a random multiple access model with adaptive energy harvesting
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 16-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a model for the classical synchronised multiple access system with a single transmission channel and a randomised transmission protocol (ALOHA). We assume in addition that there is an energy harvesting mechanism, and any message transmission requires a unit of energy. Units of energy arrive randomly and independently of anything else. We analyze stability and instability conditions for this model.
Keywords: random multiple access, stochastic energy harvesting, (in)stability, ALOHA algorithm, generalized Foster criterion.
@article{SEMR_2016_13_a44,
     author = {S. Foss and D. Kim and A. Turlikov},
     title = {Stability and instability of a random multiple access model with adaptive energy harvesting},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {16--25},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a44/}
}
TY  - JOUR
AU  - S. Foss
AU  - D. Kim
AU  - A. Turlikov
TI  - Stability and instability of a random multiple access model with adaptive energy harvesting
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 16
EP  - 25
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a44/
LA  - en
ID  - SEMR_2016_13_a44
ER  - 
%0 Journal Article
%A S. Foss
%A D. Kim
%A A. Turlikov
%T Stability and instability of a random multiple access model with adaptive energy harvesting
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 16-25
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a44/
%G en
%F SEMR_2016_13_a44
S. Foss; D. Kim; A. Turlikov. Stability and instability of a random multiple access model with adaptive energy harvesting. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 16-25. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a44/

[1] Xun Zhou, Rui Zhang, Chin Keong Ho, “Wireless Information and Power Transfer in Multiuser OFDM Systems”, IEEE Transactions on Wireless Communications, 13:4 (2014), 2282–2294 | DOI

[2] J. Jeon, A. Ephremides, “The stability region of random multiple access under stochastic energy harvesting”, Proceedings of the IEEE International Symposium on Information Theory (ISIT) (2011), 1796–1800

[3] S. Foss, D. Kim, A. Turlikov, “Random multiple access system with a common energy supply”, XIV International symposium on problems of redunduncy in information and control system (2014), 39–42

[4] N. Abramson, “Development of the ALOHANET”, IEEE Trans. Info. Theory, 31 (1985), 119–123 | DOI | Zbl

[5] S. Foss, D. Kim, A. Turlikov, “On the Models of Random Multiple Access with Stochastic Energy Harvesting”, The 7th International Congress on Ultra Modern Telecommunications and Control Systems (2015)

[6] S. Foss, T. Konstantopoulos, “An overview of some stochastic stability methods”, Journal of Operation Research Society Japan, 47:4 (2004), 275–303 | MR | Zbl

[7] B. L. Cannon, J. F. Hoburg, D. D. Stancil, S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers”, IEEE Transactions on Power Electronics, 24:7 (2009), 1819–1825 | DOI | MR

[8] B. Tong, Z. Li, G. Wang, W. Zhang, “How Wireless Power Charging Technology Affects Sensor Network Deployment and Routing”, Proc. IEEE 30th Int'l Conf. Distributed Computing Systems (ICDCS) (2010), 438–447 | Zbl

[9] S. Foss, D. Denisov, “On transience conditions for Markov chains”, Siberian Mathematical Journal, 42:2 (2001), 364–371 | DOI | MR | Zbl