Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a41, author = {S. Kubota}, title = {Strongly regular graphs with the same parameters as the symplectic graph}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1314--1338}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a41/} }
S. Kubota. Strongly regular graphs with the same parameters as the symplectic graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1314-1338. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a41/
[1] A. Abiad, A. E. Brouwer, W. H. Haemers, “Godsil–McKay switching and isomorphism”, Electron. J. Linear Algebra, 28 (2015), 3–11 | DOI | MR
[2] A. Abiad, W. H. Haemers, “Switched symplectic graphs and their $2$-ranks”, Des. Codes Cryptography, 81:1 (2016), 35–41 | DOI | MR | Zbl
[3] E. Artin, Geometric Algebra, Interscience, London, 1957 | MR | Zbl
[4] S. G. Barwick, W.-A. Jackson, T. Penttila, New families of strongly regular graphs, 2016, arXiv: 1606.05380
[5] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012 | MR | Zbl
[6] C. D. Godsil, B. D. McKay, “Constructing cospectral graphs”, Aequationes Math., 25 (1982), 257–268 | DOI | MR | Zbl
[7] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, 207, Springer, New York, 2001 | DOI | MR | Zbl
[8] F. Ihringer, A switching for all strongly regular collinearity graphs from polar spaces, 2016, arXiv: 1606.05898
[9] A. Munemasa, F. Vanhove, Twisted symplectic polar graphs and Gorden–Mills–Welch difference sets, Presentation at the Colloquium on Galois Geometry to the Memory of F. Vanhove, Ghent, February 2014 http://www.math.is.tohoku.ac.jp/m̃unemasa/documents/20140228.pdf
[10] Z. Tang, Z. Wan, “Symplectic graphs and their automorphisms”, Eur. J. Comb., 27:1 (2006), 38–50 | DOI | MR | Zbl