Strongly regular graphs with the same parameters as the symplectic graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1314-1338.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider orbit partitions of groups of automorphisms for the symplectic graph and apply Godsil–McKay switching. As a result, we find four families of strongly regular graphs with the same parameters as the symplectic graphs, including the one discovered by Abiad and Haemers. Also, we prove that switched graphs are non-isomorphic to each other by considering the number of common neighbors of three vertices.
Keywords: cospectral graphs; switching; strongly regular graph; symplectic graphs.
@article{SEMR_2016_13_a41,
     author = {S. Kubota},
     title = {Strongly regular graphs with the same parameters as the symplectic graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1314--1338},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a41/}
}
TY  - JOUR
AU  - S. Kubota
TI  - Strongly regular graphs with the same parameters as the symplectic graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1314
EP  - 1338
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a41/
LA  - en
ID  - SEMR_2016_13_a41
ER  - 
%0 Journal Article
%A S. Kubota
%T Strongly regular graphs with the same parameters as the symplectic graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1314-1338
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a41/
%G en
%F SEMR_2016_13_a41
S. Kubota. Strongly regular graphs with the same parameters as the symplectic graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1314-1338. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a41/

[1] A. Abiad, A. E. Brouwer, W. H. Haemers, “Godsil–McKay switching and isomorphism”, Electron. J. Linear Algebra, 28 (2015), 3–11 | DOI | MR

[2] A. Abiad, W. H. Haemers, “Switched symplectic graphs and their $2$-ranks”, Des. Codes Cryptography, 81:1 (2016), 35–41 | DOI | MR | Zbl

[3] E. Artin, Geometric Algebra, Interscience, London, 1957 | MR | Zbl

[4] S. G. Barwick, W.-A. Jackson, T. Penttila, New families of strongly regular graphs, 2016, arXiv: 1606.05380

[5] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012 | MR | Zbl

[6] C. D. Godsil, B. D. McKay, “Constructing cospectral graphs”, Aequationes Math., 25 (1982), 257–268 | DOI | MR | Zbl

[7] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, 207, Springer, New York, 2001 | DOI | MR | Zbl

[8] F. Ihringer, A switching for all strongly regular collinearity graphs from polar spaces, 2016, arXiv: 1606.05898

[9] A. Munemasa, F. Vanhove, Twisted symplectic polar graphs and Gorden–Mills–Welch difference sets, Presentation at the Colloquium on Galois Geometry to the Memory of F. Vanhove, Ghent, February 2014 http://www.math.is.tohoku.ac.jp/m̃unemasa/documents/20140228.pdf

[10] Z. Tang, Z. Wan, “Symplectic graphs and their automorphisms”, Eur. J. Comb., 27:1 (2006), 38–50 | DOI | MR | Zbl