@article{SEMR_2016_13_a4,
author = {A. V. Iliev},
title = {On axiomatizability of hereditary classes of graphs and matroids},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {137--147},
year = {2016},
volume = {13},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a4/}
}
A. V. Iliev. On axiomatizability of hereditary classes of graphs and matroids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 137-147. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a4/
[1] M. Aigner, Combinatorial Theory, Mir, M., 1982 (in Russian) | MR
[2] X. Caicedo, “Finitely axiomatizable quasivarieties of graphs”, Algebra Universalis, 34:2 (1995), 314–321 | DOI | MR | Zbl
[3] R. Diestel, Graph theory, Izdatelstvo Instituta matematiki, Novosibirsk, 2002 (in Russian)
[4] Yu. L. Ershov, Problems of decidability and constructive models, Nauka, M., 1980 (in Russian) | MR
[5] Yu. L. Ershov, I. A. Lavrov, A. D. Taimanov, M. A. Taitslin, “Elementary theories”, Uspekhi Mat. Nauk, 20:4(124) (1965), 37–108 (in Russian) | MR | Zbl
[6] Yu. L. Ershov, E. A. Palyutin, Mathematical Logic, Nauka, M., 1987 (in Russian) | MR | Zbl
[7] Journal of Applied and Industrial Mathematics, 57 (2014), 245–255 | DOI | MR | Zbl
[8] H. Whitney, “On the abstract properties of linear dependence”, American Journal of Mathematics, 57 (1935), 509–533 | DOI | MR