Some simple groups which are determined by their character degree graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1290-1299.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, and let $\rho(G)$ be the set of prime divisors of the irreducible character degrees of $G$. The character degree graph of $G$, denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$ and two vertices $a$ and $b$ are adjacent in $\Delta(G)$, if $ab$ divides some irreducible character degree of $G$. In this paper, we are going to show that some simple groups are uniquely determined by their orders and character degree graphs. As a consequence of this paper, we conclude that $M_{12}$ is not determined uniquely by its order and its character degree graph.
Keywords: character degree, minimal normal subgroup, Sylow subgroup.
@article{SEMR_2016_13_a39,
     author = {S. Heydari and N. Ahanjideh},
     title = {Some simple groups which are determined by their character degree graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1290--1299},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/}
}
TY  - JOUR
AU  - S. Heydari
AU  - N. Ahanjideh
TI  - Some simple groups which are determined by their character degree graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1290
EP  - 1299
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/
LA  - en
ID  - SEMR_2016_13_a39
ER  - 
%0 Journal Article
%A S. Heydari
%A N. Ahanjideh
%T Some simple groups which are determined by their character degree graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1290-1299
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/
%G en
%F SEMR_2016_13_a39
S. Heydari; N. Ahanjideh. Some simple groups which are determined by their character degree graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1290-1299. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/

[1] Y. Bugeaud, Z. Cao, M. Mignotte, “On simple $K_4$-groups”, J. Algebra, 241 (2001), 658–668 | DOI | MR | Zbl

[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon, Oxford, 1985 | MR | Zbl

[3] GAP — Groups, Algorithms, and Programming, Version 4.7.8, The GAP Group, 2015

[4] M. Herzog, “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl

[5] S. Heydari, N. Ahanjideh, “A characterization of $PGL(2,p^n)$ by some irreducible complex character degrees”, Publications de l'Institut Mathematique, 99:113 (2016), 257–264 | DOI | MR

[6] S. Heydari, N. Ahanjideh, “Characterization of some simple $K_4$-groups by some irreducible complex character degrees”, Int. J. Group Theory, 5:2 (2016), 61–74 | MR

[7] S. Heydari, N. Ahanjideh, “Groups with the same complex group algebras as some extensions of $PSL(2,p^n)$”, Math. Slovaca (to appear)

[8] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[9] A. Jafarzadeh, A. Iranmanesh, “On simple $K_n$-groups for $n=5, 6$”, Groups St Andrews 2005, v. 2, London Math. Soc. Lecture Note Ser., 340, eds. C. M. Campbell, M. R. Quick, E. F. Robertson, G. C. Smith, 2005, 517–526 | DOI | MR

[10] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, “Recognition by character degree graph and order of simple groups of order less than $6000$”, Miskolc Math. Notes, 15:2 (2014), 537–544 | MR | Zbl

[11] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, “Recognition of the simple group $PSL(2, p^2)$ by character degree graph and order”, Monatsh Math., 178:2 (2015), 251–257 | DOI | MR | Zbl

[12] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, “Recognition of some simple groups by character degree graph and order”, Math. Reports, 18:68 (2016), 51–61 | MR

[13] W. J. Shi, “On simple $K_ 4$-group”, Chin. Sci. Bull., 36 (1991), 1281–1283

[14] M. L. Lewis, D. L. White, “Diameters of degree graphs of nonsolvable groups, II”, J. Algebra, 312:2 (2007), 634–649 | DOI | MR | Zbl

[15] O. Manz, W. Willems, T. R. Wolf, “The diameter of the character degree graph”, J. Reine Angew. Math., 402 (1989), 181–198 | MR | Zbl

[16] D. L. White, “Degree graphs of simple orthogonal and symplectic groups”, J. Algebra, 319:2 (2008), 833–845 | DOI | MR | Zbl

[17] H. Xu, Y. Yan, G. Chen, “A new characterization of Mathieu-groups by the order and one irreducible character degree”, J. Inequal. Appl., 2013:209 (2013), 1–6 | DOI | MR | Zbl