Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a39, author = {S. Heydari and N. Ahanjideh}, title = {Some simple groups which are determined by their character degree graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1290--1299}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/} }
TY - JOUR AU - S. Heydari AU - N. Ahanjideh TI - Some simple groups which are determined by their character degree graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 1290 EP - 1299 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/ LA - en ID - SEMR_2016_13_a39 ER -
S. Heydari; N. Ahanjideh. Some simple groups which are determined by their character degree graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1290-1299. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/
[1] Y. Bugeaud, Z. Cao, M. Mignotte, “On simple $K_4$-groups”, J. Algebra, 241 (2001), 658–668 | DOI | MR | Zbl
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon, Oxford, 1985 | MR | Zbl
[3] GAP — Groups, Algorithms, and Programming, Version 4.7.8, The GAP Group, 2015
[4] M. Herzog, “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl
[5] S. Heydari, N. Ahanjideh, “A characterization of $PGL(2,p^n)$ by some irreducible complex character degrees”, Publications de l'Institut Mathematique, 99:113 (2016), 257–264 | DOI | MR
[6] S. Heydari, N. Ahanjideh, “Characterization of some simple $K_4$-groups by some irreducible complex character degrees”, Int. J. Group Theory, 5:2 (2016), 61–74 | MR
[7] S. Heydari, N. Ahanjideh, “Groups with the same complex group algebras as some extensions of $PSL(2,p^n)$”, Math. Slovaca (to appear)
[8] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl
[9] A. Jafarzadeh, A. Iranmanesh, “On simple $K_n$-groups for $n=5, 6$”, Groups St Andrews 2005, v. 2, London Math. Soc. Lecture Note Ser., 340, eds. C. M. Campbell, M. R. Quick, E. F. Robertson, G. C. Smith, 2005, 517–526 | DOI | MR
[10] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, “Recognition by character degree graph and order of simple groups of order less than $6000$”, Miskolc Math. Notes, 15:2 (2014), 537–544 | MR | Zbl
[11] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, “Recognition of the simple group $PSL(2, p^2)$ by character degree graph and order”, Monatsh Math., 178:2 (2015), 251–257 | DOI | MR | Zbl
[12] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, “Recognition of some simple groups by character degree graph and order”, Math. Reports, 18:68 (2016), 51–61 | MR
[13] W. J. Shi, “On simple $K_ 4$-group”, Chin. Sci. Bull., 36 (1991), 1281–1283
[14] M. L. Lewis, D. L. White, “Diameters of degree graphs of nonsolvable groups, II”, J. Algebra, 312:2 (2007), 634–649 | DOI | MR | Zbl
[15] O. Manz, W. Willems, T. R. Wolf, “The diameter of the character degree graph”, J. Reine Angew. Math., 402 (1989), 181–198 | MR | Zbl
[16] D. L. White, “Degree graphs of simple orthogonal and symplectic groups”, J. Algebra, 319:2 (2008), 833–845 | DOI | MR | Zbl
[17] H. Xu, Y. Yan, G. Chen, “A new characterization of Mathieu-groups by the order and one irreducible character degree”, J. Inequal. Appl., 2013:209 (2013), 1–6 | DOI | MR | Zbl