Some simple groups which are determined by their character degree graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1290-1299

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, and let $\rho(G)$ be the set of prime divisors of the irreducible character degrees of $G$. The character degree graph of $G$, denoted by $\Delta(G)$, is a graph with vertex set $\rho(G)$ and two vertices $a$ and $b$ are adjacent in $\Delta(G)$, if $ab$ divides some irreducible character degree of $G$. In this paper, we are going to show that some simple groups are uniquely determined by their orders and character degree graphs. As a consequence of this paper, we conclude that $M_{12}$ is not determined uniquely by its order and its character degree graph.
Keywords: character degree, minimal normal subgroup, Sylow subgroup.
@article{SEMR_2016_13_a39,
     author = {S. Heydari and N. Ahanjideh},
     title = {Some simple groups which are determined by their character degree graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1290--1299},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/}
}
TY  - JOUR
AU  - S. Heydari
AU  - N. Ahanjideh
TI  - Some simple groups which are determined by their character degree graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1290
EP  - 1299
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/
LA  - en
ID  - SEMR_2016_13_a39
ER  - 
%0 Journal Article
%A S. Heydari
%A N. Ahanjideh
%T Some simple groups which are determined by their character degree graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1290-1299
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/
%G en
%F SEMR_2016_13_a39
S. Heydari; N. Ahanjideh. Some simple groups which are determined by their character degree graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1290-1299. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a39/