@article{SEMR_2016_13_a38,
author = {M. Ghorbani and F. N. Larki},
title = {On the spectrum of {Cayley} graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1283--1289},
year = {2016},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/}
}
M. Ghorbani; F. N. Larki. On the spectrum of Cayley graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1283-1289. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/
[1] A. Abdollahi, A. Loghman, “Cayley graphs isomorphic to the product of two Cayley graphs”, Ars Combin., 126 (2016), 301–310 | MR | Zbl
[2] L. Babai, “Spectra of Cayley Graphs”, J. Combin. Theory Ser. B, 27 (1979), 180–189 | DOI | MR | Zbl
[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974 | MR | Zbl
[4] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[5] G. James, M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[6] H. Hölder, “Die Gruppen der ordnungen $p^3$, $pq^2$, $pqr$, $p^4$”, Math. Ann., 43 (1893), 301–412 (In German) | DOI | MR | Zbl
[7] P. Diaconis, M. Shahshahani, “Generating a random permutation with random transpositions”, Zeit. Wahrscheinlichkeitstheorie Verw. Gebiete, 57 (1981), 159–179 | DOI | MR | Zbl
[8] M. R. Murty, “Ramanujan graphs”, J. Ramanujan Math. Soc., 18:1 (2003), 33–52 | MR | Zbl