On the spectrum of Cayley graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1283-1289.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ and $q$ are prime numbers and $q>p>2$. In the current paper, we determine the spectra of Cayley graphs of groups of order $p^2q$ in terms of their character table.
Keywords: Cayley graph, character table, spectrum of graph.
@article{SEMR_2016_13_a38,
     author = {M. Ghorbani and F. N. Larki},
     title = {On the spectrum of {Cayley} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1283--1289},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/}
}
TY  - JOUR
AU  - M. Ghorbani
AU  - F. N. Larki
TI  - On the spectrum of Cayley graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1283
EP  - 1289
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/
LA  - en
ID  - SEMR_2016_13_a38
ER  - 
%0 Journal Article
%A M. Ghorbani
%A F. N. Larki
%T On the spectrum of Cayley graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1283-1289
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/
%G en
%F SEMR_2016_13_a38
M. Ghorbani; F. N. Larki. On the spectrum of Cayley graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1283-1289. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/

[1] A. Abdollahi, A. Loghman, “Cayley graphs isomorphic to the product of two Cayley graphs”, Ars Combin., 126 (2016), 301–310 | MR | Zbl

[2] L. Babai, “Spectra of Cayley Graphs”, J. Combin. Theory Ser. B, 27 (1979), 180–189 | DOI | MR | Zbl

[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974 | MR | Zbl

[4] D. Cvetković, P. Rowlinson, S. Simić, An introduction to the theory of graph spectra, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[5] G. James, M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[6] H. Hölder, “Die Gruppen der ordnungen $p^3$, $pq^2$, $pqr$, $p^4$”, Math. Ann., 43 (1893), 301–412 (In German) | DOI | MR | Zbl

[7] P. Diaconis, M. Shahshahani, “Generating a random permutation with random transpositions”, Zeit. Wahrscheinlichkeitstheorie Verw. Gebiete, 57 (1981), 159–179 | DOI | MR | Zbl

[8] M. R. Murty, “Ramanujan graphs”, J. Ramanujan Math. Soc., 18:1 (2003), 33–52 | MR | Zbl