On the spectrum of Cayley graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1283-1289

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ and $q$ are prime numbers and $q>p>2$. In the current paper, we determine the spectra of Cayley graphs of groups of order $p^2q$ in terms of their character table.
Keywords: Cayley graph, character table, spectrum of graph.
@article{SEMR_2016_13_a38,
     author = {M. Ghorbani and F. N. Larki},
     title = {On the spectrum of {Cayley} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1283--1289},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/}
}
TY  - JOUR
AU  - M. Ghorbani
AU  - F. N. Larki
TI  - On the spectrum of Cayley graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1283
EP  - 1289
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/
LA  - en
ID  - SEMR_2016_13_a38
ER  - 
%0 Journal Article
%A M. Ghorbani
%A F. N. Larki
%T On the spectrum of Cayley graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1283-1289
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/
%G en
%F SEMR_2016_13_a38
M. Ghorbani; F. N. Larki. On the spectrum of Cayley graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1283-1289. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a38/