Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a37, author = {D. V. Churikov and A. V. Vasil'ev}, title = {Automorphism groups of cyclotomic schemes over finite near-fields}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1271--1282}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/} }
TY - JOUR AU - D. V. Churikov AU - A. V. Vasil'ev TI - Automorphism groups of cyclotomic schemes over finite near-fields JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 1271 EP - 1282 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/ LA - en ID - SEMR_2016_13_a37 ER -
D. V. Churikov; A. V. Vasil'ev. Automorphism groups of cyclotomic schemes over finite near-fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1271-1282. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/
[1] H. Zassenhaus, “Über endliche Fastkörper”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 187–220 | DOI | MR | Zbl
[2] P. Delsarte, “An Algebraic Approach to the Association Schemes of Coding Theory”, Philips Research Reports Suppl., 10 (1973) | MR | Zbl
[3] E. Bannai, T. Ito, Algebraic Combinatorics, v. I, Benjamin/Cummings, Menlo Park, CA, 1984 | MR | Zbl
[4] J. Bagherian, I. Ponomarenko, A. Rahnamai Barghi, “On cyclotomic schemes over finite near-fields”, J. Algebraic Combin., 27 (2008), 173–185 | DOI | MR | Zbl
[5] R. McConnel, “Pseudo-ordered polynomials over a finite field”, Acta Arith., 8 (1963), 127–151 | MR | Zbl
[6] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular Graphs, Springer, Berlin, 1989 | MR | Zbl
[7] M. Muzychuk, I. Ponomarenko, “On pseudocyclic association schemes”, Ars Math. Contemp., 5 (2012), 1–25 | MR | Zbl
[8] M. W. Liebeck, C. E. Praeger, J. Saxl, “The classification of $\frac{3}{2}$-transitive permutation groups and $\frac{1}{2}$-transitive linear groups”, Proc. Amer. Math. Soc. (to appear)
[9] I. Ponomarenko, “Graph isomorphism problem and $2$-closed permutation groups”, Appl. Algebra Eng. Comm. Comput., 5 (1994), 9–22 | DOI | MR | Zbl
[10] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235 (2001), 221–232 | DOI | MR | Zbl
[11] L. Babai, E. M. Luks, “Canonical labeling of graphs”, Proceedings of the 15th ACM STOC, 1983, 171–-183
[12] H. Wielandt, Permutation Groups through Invariant Relations and Invariant Functions, Lect. Notes, Dept. Math. Ohio St. Univ., Columbus, 1969
[13] H. Wähling, Theorie der Fastkorper, Thales, 1987 | MR | Zbl
[14] I. A. Faradžev, A. A. Ivanov, M. H. Klin, A. J. Woldar (eds.), Investigations in Algebraic Theory of Combinatorial Objects, Springer Science and Business Media, 1994 | Zbl
[15] H. Wielandt, Finite Permutation Groups, Academic, 1964 | MR | Zbl
[16] D. S. Passman, “Solvable $\frac{3}{2}$-transitive permutation groups”, J. Algebra, 7 (1967), 192–207 | DOI | MR | Zbl
[17] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system I: The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl
[18] GAP — Groups, Algorithms, and Programming, Version 4.8.5, , The GAP Group, 2016 http://www.gap-system.org
[19] M. Klin, C. Pech, S. Reichard, COCO2P — a GAP package, 0.14, , 07.02.2015 http://www.math.tu-dresden.de/p̃ech/COCO2P/
[20] B. Huppert, “Zweifach transitive auflösbare Permutationsgruppen”, Math. Z., 68 (1957), 126–150 | DOI | MR | Zbl