Automorphism groups of cyclotomic schemes over finite near-fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1271-1282

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that apart from a finite number of known exceptions the automorphism group of a nontrivial cyclotomic scheme over a finite near-field $\mathbb{K}$ is isomorphic to a subgroup of the group ${\operatorname{A\Gamma L}}(1,\mathbb{F})$, where $\mathbb{F}$ is a field with $|\mathbb{F}|=|\mathbb{K}|$. Moreover, we obtain that the automorphism group of such a scheme is solvable if the base group of the scheme is solvable.
Keywords: near-field, cyclotomic scheme, automorphism group of a scheme, $2$-closure of a permutation group, $\frac{3}{2}$-transitive permutation groups.
@article{SEMR_2016_13_a37,
     author = {D. V. Churikov and A. V. Vasil'ev},
     title = {Automorphism groups of cyclotomic schemes over finite near-fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1271--1282},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/}
}
TY  - JOUR
AU  - D. V. Churikov
AU  - A. V. Vasil'ev
TI  - Automorphism groups of cyclotomic schemes over finite near-fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1271
EP  - 1282
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/
LA  - en
ID  - SEMR_2016_13_a37
ER  - 
%0 Journal Article
%A D. V. Churikov
%A A. V. Vasil'ev
%T Automorphism groups of cyclotomic schemes over finite near-fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1271-1282
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/
%G en
%F SEMR_2016_13_a37
D. V. Churikov; A. V. Vasil'ev. Automorphism groups of cyclotomic schemes over finite near-fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1271-1282. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/