Automorphism groups of cyclotomic schemes over finite near-fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1271-1282.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that apart from a finite number of known exceptions the automorphism group of a nontrivial cyclotomic scheme over a finite near-field $\mathbb{K}$ is isomorphic to a subgroup of the group ${\operatorname{A\Gamma L}}(1,\mathbb{F})$, where $\mathbb{F}$ is a field with $|\mathbb{F}|=|\mathbb{K}|$. Moreover, we obtain that the automorphism group of such a scheme is solvable if the base group of the scheme is solvable.
Keywords: near-field, cyclotomic scheme, automorphism group of a scheme, $2$-closure of a permutation group, $\frac{3}{2}$-transitive permutation groups.
@article{SEMR_2016_13_a37,
     author = {D. V. Churikov and A. V. Vasil'ev},
     title = {Automorphism groups of cyclotomic schemes over finite near-fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1271--1282},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/}
}
TY  - JOUR
AU  - D. V. Churikov
AU  - A. V. Vasil'ev
TI  - Automorphism groups of cyclotomic schemes over finite near-fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1271
EP  - 1282
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/
LA  - en
ID  - SEMR_2016_13_a37
ER  - 
%0 Journal Article
%A D. V. Churikov
%A A. V. Vasil'ev
%T Automorphism groups of cyclotomic schemes over finite near-fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1271-1282
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/
%G en
%F SEMR_2016_13_a37
D. V. Churikov; A. V. Vasil'ev. Automorphism groups of cyclotomic schemes over finite near-fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1271-1282. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a37/

[1] H. Zassenhaus, “Über endliche Fastkörper”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 187–220 | DOI | MR | Zbl

[2] P. Delsarte, “An Algebraic Approach to the Association Schemes of Coding Theory”, Philips Research Reports Suppl., 10 (1973) | MR | Zbl

[3] E. Bannai, T. Ito, Algebraic Combinatorics, v. I, Benjamin/Cummings, Menlo Park, CA, 1984 | MR | Zbl

[4] J. Bagherian, I. Ponomarenko, A. Rahnamai Barghi, “On cyclotomic schemes over finite near-fields”, J. Algebraic Combin., 27 (2008), 173–185 | DOI | MR | Zbl

[5] R. McConnel, “Pseudo-ordered polynomials over a finite field”, Acta Arith., 8 (1963), 127–151 | MR | Zbl

[6] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular Graphs, Springer, Berlin, 1989 | MR | Zbl

[7] M. Muzychuk, I. Ponomarenko, “On pseudocyclic association schemes”, Ars Math. Contemp., 5 (2012), 1–25 | MR | Zbl

[8] M. W. Liebeck, C. E. Praeger, J. Saxl, “The classification of $\frac{3}{2}$-transitive permutation groups and $\frac{1}{2}$-transitive linear groups”, Proc. Amer. Math. Soc. (to appear)

[9] I. Ponomarenko, “Graph isomorphism problem and $2$-closed permutation groups”, Appl. Algebra Eng. Comm. Comput., 5 (1994), 9–22 | DOI | MR | Zbl

[10] S. Evdokimov, I. Ponomarenko, “Two-closure of odd permutation group in polynomial time”, Discrete Math., 235 (2001), 221–232 | DOI | MR | Zbl

[11] L. Babai, E. M. Luks, “Canonical labeling of graphs”, Proceedings of the 15th ACM STOC, 1983, 171–-183

[12] H. Wielandt, Permutation Groups through Invariant Relations and Invariant Functions, Lect. Notes, Dept. Math. Ohio St. Univ., Columbus, 1969

[13] H. Wähling, Theorie der Fastkorper, Thales, 1987 | MR | Zbl

[14] I. A. Faradžev, A. A. Ivanov, M. H. Klin, A. J. Woldar (eds.), Investigations in Algebraic Theory of Combinatorial Objects, Springer Science and Business Media, 1994 | Zbl

[15] H. Wielandt, Finite Permutation Groups, Academic, 1964 | MR | Zbl

[16] D. S. Passman, “Solvable $\frac{3}{2}$-transitive permutation groups”, J. Algebra, 7 (1967), 192–207 | DOI | MR | Zbl

[17] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system I: The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl

[18] GAP — Groups, Algorithms, and Programming, Version 4.8.5, , The GAP Group, 2016 http://www.gap-system.org

[19] M. Klin, C. Pech, S. Reichard, COCO2P — a GAP package, 0.14, , 07.02.2015 http://www.math.tu-dresden.de/p̃ech/COCO2P/

[20] B. Huppert, “Zweifach transitive auflösbare Permutationsgruppen”, Math. Z., 68 (1957), 126–150 | DOI | MR | Zbl