Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a36, author = {M. Jalali-Rad and A. R. Ashrafi}, title = {Erd\"os--Ko--Rado properties of some finite groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1249--1257}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a36/} }
M. Jalali-Rad; A. R. Ashrafi. Erd\"os--Ko--Rado properties of some finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1249-1257. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a36/
[1] B. Ahmadi, K. Meagher, “The Erdös–Ko–Rado property for some permutation groups”, Australas. J. Combin., 61:1 (2015), 23–41 | MR | Zbl
[2] B. Ahmadi, Maximum Intersecting Families of Permutations, Ph.D. thesis, University of Regina, 2013 | Zbl
[3] B. Ahmadi, K. Meagher, “The Erdös–Ko–Rado property for some $2$-transitive groups”, Ann. Comb., 19:4 (2015), 621–640 | DOI | MR | Zbl
[4] P. J. Cameron, C. Y. Ku, “Intersecting families of permutations”, European J. Combin., 24:7 (2003), 881–890 | DOI | MR | Zbl
[5] M. R. Darafsheh, N. S. Poursalavati, “On the existence of the orthogonal basis of the symmetry classes of tensors associated with certain groups”, SUT J. Math., 37:1 (2001), 1–17 | MR | Zbl
[6] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports No 10, 1973 | MR | Zbl
[7] P. Diaconis, M. Shahshahani, “Generating a random permutation with random transpositions”, Z. Wahrscheinlichkeitstheor. Verw. Gebiete, 57 (1981), 159–179 | DOI | MR | Zbl
[8] P. Erdös, C. Ko, R. Rado, “Intersection theorems for systems of finite sets”, Quart. J. Math., Oxf. II. Ser., 12 (1961), 313–320 | DOI | MR | Zbl
[9] P. Frankl, M. Deza, “On the maximum number of permutations with given maximal or minimal distance”, J. Combin. Theory, Ser. A, 22 (1977), 352–360 | DOI | MR | Zbl
[10] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, 207, Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[11] M. Hormozi, K. Rodtes, “Symmetry classes of tensors associated with the semi-dihedral groups $SD_{8n}$”, Colloq. Math., 131:1 (2013), 59–67 | DOI | MR | Zbl
[12] G. James, M. Liebeck, Representations and Characters of Groups, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[13] G. O. H. Katona, “A simple proof of the Erdös–Chao Ko–Rado theorem”, J. Comb. Theory Ser. B, 13 (1972), 183–184 | DOI | MR | Zbl
[14] C. Y. Ku, T. W. H. Wong, “Intersecting families in the alternating group and direct product of symmetric groups”, Electron. J. Combin., 14 (2007), #R25 | MR | Zbl
[15] K. Meagher, P. Spiga, “An Erdös–Ko–Rado theorem for the derangement graph of $PGL(2, q)$ acting on the projective line”, J. Combin. Theory, Ser. A, 118:2 (2011), 532–544 | DOI | MR | Zbl
[16] K. Meagher, P. Spiga, “An Erdös–Ko–Rado theorem for the derangement graph of $PGL_3(q)$ acting on the projective plane”, SIAM J. Discrete Math., 28:2 (2014), 918–941 | DOI | MR | Zbl
[17] The GAP Team Group, GAP — Groups, Algorithms, and Programming, Version 4.5.5, , 2012 http://www.gap-system.org
[18] J. Wang, S. J. Zhang, “An Erdös–Ko–Rado-type theorem in Coxeter groups”, European J. Combin., 29:5 (2008), 1112–1115 | DOI | MR | Zbl