Erd\"os--Ko--Rado properties of some finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1249-1257

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a subgroup of the symmetric group $\mathrm{Sym}(n)$ and $A$ be a subset of $G$. The subset $A$ is said to be intersecting if for any pair of permutations $\sigma, \tau \in A$ there exists $i, 1 \leq i \leq n,$ such that $\sigma(i)=\tau(i)$. The group $G$ has Erdös-Ko-Rado (EKR) property, if the size of any intersecting subset of $G$ is bounded above by the size of a point stabilizer in $G$. The group $G$ has the strict EKR property if every intersecting set of maximum size is the coset of the stabilizer of a point. The aim of this paper is to investigate the EKR and strict EKR properties of the groups $V_{8n}, U_{6n}, T_{4n}$ and $SD_{8n}$.
Keywords: Erdös-Ko-Rado property, finite group.
@article{SEMR_2016_13_a36,
     author = {M. Jalali-Rad and A. R. Ashrafi},
     title = {Erd\"os--Ko--Rado properties of some finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1249--1257},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a36/}
}
TY  - JOUR
AU  - M. Jalali-Rad
AU  - A. R. Ashrafi
TI  - Erd\"os--Ko--Rado properties of some finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1249
EP  - 1257
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a36/
LA  - en
ID  - SEMR_2016_13_a36
ER  - 
%0 Journal Article
%A M. Jalali-Rad
%A A. R. Ashrafi
%T Erd\"os--Ko--Rado properties of some finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1249-1257
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a36/
%G en
%F SEMR_2016_13_a36
M. Jalali-Rad; A. R. Ashrafi. Erd\"os--Ko--Rado properties of some finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1249-1257. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a36/