Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a35, author = {A. A. Galt and D. O. Revin}, title = {The local case in {Aschbacher} theorem for linear and unitary groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1207--1218}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a35/} }
TY - JOUR AU - A. A. Galt AU - D. O. Revin TI - The local case in Aschbacher theorem for linear and unitary groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 1207 EP - 1218 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a35/ LA - ru ID - SEMR_2016_13_a35 ER -
A. A. Galt; D. O. Revin. The local case in Aschbacher theorem for linear and unitary groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1207-1218. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a35/
[1] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. math., 76 (1984), 469–514 | DOI | MR | Zbl
[2] A. Galt, W. Guo, E. M. Averkin, D. O. Revin, “On the Local Case in the Aschbacher Theorem for Linear and Unitary Groups”, Siberian Mathematical Journal, 55:2 (2014), 239–245 | DOI | MR | Zbl
[3] P. Kleidman, M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser., 129, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[4] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser., 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[5] J. L. Alperin, P. Fong, “Weights for Symmetric and General Linear Groups”, Journal of Algebra, 131 (1990), 2–22 | DOI | MR | Zbl
[6] J. An, “Weights for classical groups”, Transactions of the AMS, 342:1 (1994), 1–42 | DOI | MR | Zbl
[7] J. An, “$2$-Weights for classical groups”, J. reine angew. Math., 439 (1993), 159–204 | MR | Zbl
[8] J. An, “$2$-Weights for general linear groups”, Journal of Algebra, 149 (1992), 500–527 | DOI | MR | Zbl
[9] J. An, “$2$-Weights for unitary groups”, Transactions of the AMS, 339:1 (1993), 251–278 | MR | Zbl
[10] D. O. Revin, “The $D_{\pi}$-property in finite simple groups”, Algebra and Logic, 47:3 (2008), 210–227 | DOI | MR | Zbl
[11] D. O. Revin, “The $D_{\pi}$-property of finite groups in case $2\notin{\pi}$”, Proceedings of the Institute of Mathematics and Mechanics, 13, no. 1, 2007, 166–182 | Zbl
[12] D. O. Revin, “The $D_{\pi}$-property of linear and unitary groups”, Siberian Mathematical Journal, 49:2 (2008), 353–361 | DOI | MR | Zbl
[13] D. O. Revin, “Superlocals in Symmetric and Alternating Groups”, Algebra and Logic, 42:3 (2003), 192–206 | DOI | MR | Zbl
[14] A. Borel, J. Tits, “Eléments unipotents et sousgroupes paraboliques de groupes réductifs, I”, Invent. math., 12:2 (1971), 95–104 | DOI | MR | Zbl