On interesection of two nilpotent subgroups in small finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1099-1115.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $G$ is a finite group whose socle is some simple group from "Atlas of finite groups" then, for any nilpotent subgroups $A$ and $B$ of $G$, there exists an element $g$ of $G$ such that $A\cap B^g=1$, besides several cases when $A$ and $B$ are $2$- or $3$-groups.
Keywords: finite group, nilpotent subgroup, interesection of subgroups.
Mots-clés : simple group
@article{SEMR_2016_13_a34,
     author = {V. I. Zenkov},
     title = {On interesection of two nilpotent subgroups in small finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1099--1115},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a34/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On interesection of two nilpotent subgroups in small finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1099
EP  - 1115
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a34/
LA  - ru
ID  - SEMR_2016_13_a34
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On interesection of two nilpotent subgroups in small finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1099-1115
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a34/
%G ru
%F SEMR_2016_13_a34
V. I. Zenkov. On interesection of two nilpotent subgroups in small finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1099-1115. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a34/

[1] V. I. Zenkov, “Intersections of abelian subgroups in finite groups”, Mat. Zametki, 56:2 (1994), 150–152 | MR | Zbl

[2] V. D. Mazurov, V. I. Zenkov, “On intersection of Sylow subgroups in finite groups”, Algebra i Logika, 35:4 (1996), 424–432 | MR | Zbl

[3] A. R. Jamali, M. Viseh, “On nilpotent subgroups containing nontrivial normal subgroups”, J. Group Theory, 13:4 (2010), 411–416 | MR | Zbl

[4] The Kourovka notebook: unsolved problems in group theory, 18th ed., Inst. Mat. SO RAN, Novosibirsk, 2014 http://math.usc.ru/ãlglog.html | Zbl

[5] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3, Amer. Math. Soc., Providence, Rhode Island, 1991 | MR

[6] J. H. Conway et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[7] D. Gorenstein, Finite simple groups. Introduction to their classification, Mir, M., 1996 | MR

[8] V. I. Zenkov, “Intersection of nilpotent subgroups in finite groups”, Fund. Prikl. Mat., 2:1 (1996), 1–92 | MR | Zbl

[9] V. I. Zenkov, “On intersections of nilpotent subgroups in finite symmetric and alternating groups”, Trudy Inst. Mat. i Mech. UrO RAN, 19, no. 3, 2013, 145–149 | MR

[10] V. M. Busarkin, Yu. M. Gorchakov, Finite splittable groups, Nauka, M., 1968

[11] V. I. Zenkov, A. I. Makosii, “On intersections of Sylow 2-subgroups in finite groups. I”, Vladikavkaz Mat. Zh., 11:4 (2009), 16–21 | MR | Zbl

[12] Yong Yang, “Regular orbits of nilpotent subgroups of sobvable linear groups”, J. Algebra, 325:1 (2011), 56–69 | DOI | MR | Zbl

[13] V. I. Zenkov, “On intersections of primary subgroups in the group $\mathrm{Aut}(L_n(2))$”, Trudy Inst. Mat. i Mech. UrO RAN, 21, no. 1, 2015, 105–111 | MR

[14] V. I. Zenkov, Ya. N. Nuzhin, “On intersections of primary subgroups of odd order in almost simple groups”, Fund. Prikl. Mat., 19:6 (2014), 115–123 | MR

[15] V. I. Zenkov, “On intersections of abelian and nilpotent subgroups in finite groups”, Trudy Inst. Mat. i Mech. UrO RAN, 21, no. 3, 2015, 128–131 | MR

[16] V. I. Zenkov, “On intersections of Sylow 2-subgroups in automorphism groups of finite simple groups of exceptional Lie type”, Trudy Inst. Mat. i Mech. UrO RAN, 17, no. 4, 2011, 92–101

[17] M. Aschbacher, G. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–92 | DOI | MR | Zbl