On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1040-1051.

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved that a distance-regular graph in which neighborhoods of vertices are strongly regular with parameters $(245,64,18,16)$ has intersection array $\{243,220,1;1,22,243\}$ or $\{243,220,1;1,4,243\}$. In this paper we found the automorphisms of a distance regular graph with intersection array $\{243,220,1;1,22,243\}$. It is proved that a vertex-transitive distance-regular graph with intersection array $\{243,220,1;1,22,243\}$ is the arc-transitive Mathon graph affording the group $L_2(3^5)$.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2016_13_a31,
     author = {V. V. Bitkina and A. K. Gutnova and A. A. Makhnev},
     title = {On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1040--1051},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a31/}
}
TY  - JOUR
AU  - V. V. Bitkina
AU  - A. K. Gutnova
AU  - A. A. Makhnev
TI  - On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 1040
EP  - 1051
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a31/
LA  - ru
ID  - SEMR_2016_13_a31
ER  - 
%0 Journal Article
%A V. V. Bitkina
%A A. K. Gutnova
%A A. A. Makhnev
%T On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 1040-1051
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a31/
%G ru
%F SEMR_2016_13_a31
V. V. Bitkina; A. K. Gutnova; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 1040-1051. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a31/

[1] A. A. Makhnev, D. V. Paduchikh, “Graphs with strongly regular local subgraphs having eigenvalue 4”, Maltsevskie chteniya, Abstracts, Novosibirsk, 2016, 72

[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] A. A. Makhnev, D. V. Paduchikh, “An automorphism group of a distance-regular graph with intersection array $\{24, 21, 3; 1, 3, 18\}$”, Algebra and Logic, 4 (2012), 319–332 | DOI | MR | Zbl

[5] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 3 (2010), 439–442 | DOI | MR | Zbl

[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl