On random choice of elliptic and hyperbolic rotations of the Lorentz spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 955-971.

Voir la notice de l'article provenant de la source Math-Net.Ru

Elliptic and hyperbolic rotations of the $(n+1)$-dimensional Lorentz space can be represented as exponential of rank $2$ matrices of the real Lie algebra $\mathfrak{so}(1, n)$. We shown that the ratio of the volumes of the corresponding sets of matrices Euclidean norm $\leqslant r$ is equal to $(\sqrt2)^{n-1}-1$ for all $r > 0$. Consequently the portion of hyperbolic rotations near identity decreases exponentially with increasing $n$. Another corollary is that in case of Minkovski space of special relativity choose of elliptic and hyperbolic rotations near identity is equiprobable.
Mots-clés : elliptic rotation, random matrix.
Keywords: hyperbolic rotation
@article{SEMR_2016_13_a28,
     author = {V. A. Churkin and A. I. Ilin},
     title = {On random choice of elliptic and hyperbolic rotations of the {Lorentz} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {955--971},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a28/}
}
TY  - JOUR
AU  - V. A. Churkin
AU  - A. I. Ilin
TI  - On random choice of elliptic and hyperbolic rotations of the Lorentz spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 955
EP  - 971
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a28/
LA  - ru
ID  - SEMR_2016_13_a28
ER  - 
%0 Journal Article
%A V. A. Churkin
%A A. I. Ilin
%T On random choice of elliptic and hyperbolic rotations of the Lorentz spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 955-971
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a28/
%G ru
%F SEMR_2016_13_a28
V. A. Churkin; A. I. Ilin. On random choice of elliptic and hyperbolic rotations of the Lorentz spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 955-971. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a28/

[1] Krivonogov A. S., Churkin V. A., “The portion of matrices with real spectrum in Lie algebra of real symplectic group”, Siberian Math. Journal, 55:6 (2014), 1056–1072 | DOI | MR | Zbl

[2] Edelman A., “The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law”, J. Multivariate Anal., 60 (1997), 203–232 | DOI | MR | Zbl

[3] Shafarevich I. R., Remizov A. O., Linear algebra and geometry, Springer-Verlag, Berlin–Heidelberg, 2012 | MR

[4] Kobayashi Sh., Nomizu K., Foundations of differential geometry, v. 1, Intersc. Publishers, New York–London, 1963 ; v. 2, 1969 | MR | Zbl | Zbl

[5] Zelikin M. I., Control theory and optimization, v. I, Encyclopedia of mathematical sciences, 86, Homogeneus spaces and the Ricatti equation in the calcules of variatious, Springer-Verlag, Berlin–Heidelberg, 2000 | DOI | MR | Zbl