Projective formulas and unification in linear discrete temporal multi-agent logics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 923-929

Voir la notice de l'article provenant de la source Math-Net.Ru

This article continues our studying the problem of unification in multi-agent logics. Based on the approach to the unificational problem through the projective formulas proposed by V. Rybakov and S. Ghilardi, in this paper we consider some linear discrete temporal logics with the agent relations. We proved the projectivity of any unifiable formula in these logics and gave an algorithm for construction the most general unifier.
Keywords: modal temporal logic, passive inference rules
Mots-clés : unification, multi-agent relations.
@article{SEMR_2016_13_a26,
     author = {S. I. Bashmakov and A. V. Kosheleva and V. Rybakov},
     title = {Projective formulas and unification in linear discrete temporal multi-agent logics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {923--929},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/}
}
TY  - JOUR
AU  - S. I. Bashmakov
AU  - A. V. Kosheleva
AU  - V. Rybakov
TI  - Projective formulas and unification in linear discrete temporal multi-agent logics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 923
EP  - 929
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/
LA  - en
ID  - SEMR_2016_13_a26
ER  - 
%0 Journal Article
%A S. I. Bashmakov
%A A. V. Kosheleva
%A V. Rybakov
%T Projective formulas and unification in linear discrete temporal multi-agent logics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 923-929
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/
%G en
%F SEMR_2016_13_a26
S. I. Bashmakov; A. V. Kosheleva; V. Rybakov. Projective formulas and unification in linear discrete temporal multi-agent logics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 923-929. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/