Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a26, author = {S. I. Bashmakov and A. V. Kosheleva and V. Rybakov}, title = {Projective formulas and unification in linear discrete temporal multi-agent logics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {923--929}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/} }
TY - JOUR AU - S. I. Bashmakov AU - A. V. Kosheleva AU - V. Rybakov TI - Projective formulas and unification in linear discrete temporal multi-agent logics JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 923 EP - 929 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/ LA - en ID - SEMR_2016_13_a26 ER -
%0 Journal Article %A S. I. Bashmakov %A A. V. Kosheleva %A V. Rybakov %T Projective formulas and unification in linear discrete temporal multi-agent logics %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2016 %P 923-929 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/ %G en %F SEMR_2016_13_a26
S. I. Bashmakov; A. V. Kosheleva; V. Rybakov. Projective formulas and unification in linear discrete temporal multi-agent logics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 923-929. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a26/
[1] F. Baader, B. Morawska, “Unification in the description logic EL”, Logical Methods in Computer Science, 6 (2010), 1–31 | DOI | MR | Zbl
[2] F. Baader, P. Narendran, “Unification in a description logic with transitive closure of roles”, Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2001, LNCS, 2250, Springer, 2001, 217–232 | MR | Zbl
[3] V. V. Rybakov, M. Terziler, C. Gencer, “An essay on unification and inference rules for modal logics”, Bulletin of the Section of Logic, 28:3 (1999), 145–157 | MR | Zbl
[4] S. I. Bashmakov, “Unification and inference rules in the multi-modal logic of knowledge and linear time LTK”, Journal of Siberian Federal University. Mathematics and Physics, 9:2 (2016), 149–157 | DOI
[5] S. I. Bashmakov, A. V. Kosheleva, V. Rybakov, “Non-unifiability in linear temporal logic of knowledge with multi-agent relations”, Siberian Electronic Mathematical Reports, 13 (2016), 656–663
[6] S. Ghilardi, “Unification Through Projectivity”, J. of Logic and Computation, 7:6 (1997), 733–752 | DOI | MR | Zbl
[7] S. Ghilardi, “Unification in Intuitionistic logic”, Journal of Symbolic Logic, 64:2 (1999), 859–880 | DOI | MR | Zbl
[8] S. Ghilardi, L. Sacchetti, “Filtering Unification and Most General Unifiers in Modal Logic”, Journal of Symbolic Logic, 69:3 (2004), 879–906 | DOI | MR | Zbl
[9] E. Jerabek, “Admissible rules of modal logics”, Journal of Logic and Computation, 15 (2005), 411–431 | DOI | MR | Zbl
[10] E. Jerabek, “Independent bases of admissible rules”, Logic Journal of the IGPL, 16 (2008), 249–267 | DOI | MR | Zbl
[11] R. Iemhoff, “On the admissible rules of intuitionistic propositional logic”, Journal of Symbolic Logic, 66:1 (2001), 281–294 | DOI | MR | Zbl
[12] R. Iemhoff, G. Metcalfe, “Proof theory for admissible rules”, Annals of Pure and Applied Logic, 159 (2009), 171–186 | DOI | MR | Zbl
[13] V. V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, Annals of Pure and Applied Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl
[14] K. Segerberg, “Modal Logics with Linear Alternative Relations”, Theoria, 36 (1970), 301–322 | DOI | MR
[15] Gabbay D. M., Kurucz A., Wolter F., Zakharyaschev M., Many-Dimensional Modal Logics: Theory and Applications, Elsevier Science Pub Co., 2003 | MR | Zbl
[16] Pnueli A., “The Temporal Logic of Programs”, Proc. of the 18th Annual Symp. on Foundations of Computer Science, invariant, IEEE, 1977, 46–57 | MR
[17] Bloem R., Ravi K., Somenzi F., “Efficient Decision Procedures for Model Checking of Linear Time Logic Properties”, Conference on Computer Aided Verification (CAV) (Trento, Italy, July 6–10, 1999), LNCS, 1633, Springer-Verlag, 1999 | MR | Zbl
[18] V. V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Annals of Pure and Applied Logic, 155 (2008), 32–45 | DOI | MR | Zbl
[19] S. Babenyshev, V. Rybakov, “Linear temporal logic LTL: basis for admissible rules”, Journal of Logic and Computation, 21 (2011), 157–177 | DOI | MR | Zbl
[20] V. V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl
[21] V. V. Rybakov, “Writing out Unifiers in Linear Temporal Logic”, J. Logic Computation, 22:5 (2012), 1199–1206 | DOI | MR | Zbl
[22] V. V. Rybakov, “Projective formulas and unification in linear temporal logic LTLU”, Logic Journal of the IGPL, 22:4 (2014), 665–672 | DOI | MR | Zbl
[23] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Logic Journal of IGPL, 20:1 (2012), 121–153 | DOI | MR | Zbl
[24] S. Babenyshev, V. Rybakov, “Unification in linear temporal logic LTL”, Annals of Pure and Applied Logic, 162 (2011), 991–1000 | DOI | MR | Zbl