$JSp$-cosemanticness and JSB property of Abelian groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 861-874

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this article is to study the model-theoretic properties of Abelian groups within Jonsson theories. The obtained results give us Jonsson analogs for the Schröder–Bernstein property and for the elementary classification of complete theories of Abelian groups.
Keywords: Jonsson theory, model companion, existentially closed model, perfectness
Mots-clés : cosemanticness.
@article{SEMR_2016_13_a22,
     author = {A. R. Yeshkeyev and O. I. Ulbrikht},
     title = {$JSp$-cosemanticness and {JSB} property of {Abelian} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {861--874},
     publisher = {mathdoc},
     volume = {13},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/}
}
TY  - JOUR
AU  - A. R. Yeshkeyev
AU  - O. I. Ulbrikht
TI  - $JSp$-cosemanticness and JSB property of Abelian groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2016
SP  - 861
EP  - 874
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/
LA  - ru
ID  - SEMR_2016_13_a22
ER  - 
%0 Journal Article
%A A. R. Yeshkeyev
%A O. I. Ulbrikht
%T $JSp$-cosemanticness and JSB property of Abelian groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2016
%P 861-874
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/
%G ru
%F SEMR_2016_13_a22
A. R. Yeshkeyev; O. I. Ulbrikht. $JSp$-cosemanticness and JSB property of Abelian groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 861-874. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/