Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2016_13_a22, author = {A. R. Yeshkeyev and O. I. Ulbrikht}, title = {$JSp$-cosemanticness and {JSB} property of {Abelian} groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {861--874}, publisher = {mathdoc}, volume = {13}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/} }
TY - JOUR AU - A. R. Yeshkeyev AU - O. I. Ulbrikht TI - $JSp$-cosemanticness and JSB property of Abelian groups JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2016 SP - 861 EP - 874 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/ LA - ru ID - SEMR_2016_13_a22 ER -
A. R. Yeshkeyev; O. I. Ulbrikht. $JSp$-cosemanticness and JSB property of Abelian groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 13 (2016), pp. 861-874. http://geodesic.mathdoc.fr/item/SEMR_2016_13_a22/
[1] J. Barwise (ed.), Handbook of mathematical logic, v. 1, Model theory, Science, M., 1982 | Zbl
[2] T. G. Mustafin, “Generalized Jonsson Conditions and a Description of Generalized Jonsson Theories of Boolean Algebras”, Siberian Adv. Math., 10:3 (2000), 1–58 | MR | Zbl
[3] A. R. Yeshkeyev, “On Jonsson stability and some of its generalizations”, Journal of Mathematical Sciences, 166:5 (2010), 646–654 | DOI | MR | Zbl
[4] S. Shelah, Classification theory and the number of non-isomorphic models, Studies in Logic and the Foundations of Mathematics, 1978 | Zbl
[5] A. R. Yeshkeyev, “The structure of lattices of positive existential formulae of ($\Delta$-$PJ$)-theories”, Science Asia. Journal of The Science Society of Thailand, 39:1 (2013), 19–24 | DOI
[6] V. Weispfenning, “The model-theoretic significance of complemented existential formulas”, The Journal of Symbolic Logic, 46:4 (1981), 843–849 | DOI | MR | Zbl
[7] A. R. Yeshkeyev, “Categorical positive Jonsson theories”, Bulletin of the Karaganda University. Mathematics Series, 2006, no. 4(44), 10–16
[8] I. Ben-Yaacov, “Positive model theory and compact abstract theories”, Journal of Mathematical Logic, 3:1 (2003), 85–118 | DOI | MR | Zbl
[9] I. Ben-Yaacov, “Compactness and independence in non first order frameworks”, Bulletin of Symbolic logic, 11:1 (2005), 28–50 | DOI | MR | Zbl
[10] W. Szmielew, “Elementary properties of Abelian groups”, Fundamenta Mathematica, 41 (1955), 203–271 | MR | Zbl
[11] Y. L. Ershov, Problems of solubility and constructive models, Science, M., 1980 | Zbl
[12] L. Fuchs, Infinite Abelian Groups, v. I, Publishing House of Mir, M., 1974 | MR | Zbl
[13] P. C. Eklof, E. R. Fischer, “The elementary theory of abelian groups”, Annals of Math logic, 4 (1972), 115–171 | DOI | MR | Zbl
[14] Y. L. Ershov, E. A. Palyutin, Mathematical logic, Fizmatlit, M., 2011
[15] J. Goodrick, The Schröder–Bernstein property for theories of abelian groups, 2007, arXiv: 0705.1850v1
[16] A. R. Yeshkeyev, Jonsson theories, KarGU, Karaganda, 2009, 250 pp.
[17] Y. T. Mustafin, “Quelques proprietes des theories de Jonsson”, The Journal of Symbolic Logic, 67:2 (2002), 528–536 | DOI | MR | Zbl
[18] A. R. Yeshkeyev, “Jonsson classes of Abelian groups”, Buketov meeting, Interuniversity conference dedikaded to the 20th anniversary of the KarSU (Karaganda, 1992), v. 1, 127
[19] A. R. Yeshkeyev, G. S. Begetayeva, “Stability of $\Delta$-$PM$-theory and its center”, Bulletin of the Karaganda University. Mathematics Series, 2009, no. 4(56), 29–34
[20] B. Jonsson, “Homogeneous universal relational systems”, Math. Scand., 8 (1960), 137–142 | DOI | MR | Zbl
[21] J. Goodrick, When are elementarily bi-embeddable models isomorphic?, PhD thesis, University of California, Berkeley, 2007 | MR
[22] T. A. Nurmagambetov, “The mutual embeddability of models”, Theory of Algebraic Structures, Collection of scientific papers, Karaganda, 1985, 109–115 | MR | Zbl
[23] T. A. Nurmagambetov, “Characterization of $\omega$-stable theories with a bounded number of dimensions”, Algebra and Logika, 28:5 (1989), 388–396 | DOI | MR | Zbl
[24] J. Goodrick, M. C. Laskowski, “The Schröder-Bernstein property for $a$-saturated models”, Proc. AMS, 142:3 (2014), 1013–1023 | DOI | MR | Zbl